Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Attention mechanism"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    DissertaçãoAcesso aberto (Open Access)
    Classificação de tumores cerebrais: um estudo comparativo entre rede neural convolucional e rede neural convolucional com mecanismo de atenção
    (Universidade Federal do Pará, 2024-09-30) SILVA, Ulrich Kauê Mendes Alencar da; CASTRO, Adriana Rosa Garcez; http://lattes.cnpq.br/5273686389382860
    Os tumores cerebrais são doenças neurológicas com elevado potencial de impacto na vida dos indivíduos acometidos, requerendo um diagnóstico rápido e preciso por meio de exames complementares de imagem, como a ressonância magnética, que é considerada padrão- ouro nesse processo. Considerando a necessidade de um diagnóstico mais rápido, sistemas de classificação baseados em Aprendizado de Máquina vêm sendo desenvolvidos e dentro deste contexto essa dissertação, tem como objetivo apresentar um estudo comparativo entre uma Rede Neural Convolucional (CNN) e uma CNN com mecanismo de atenção, desenvolvidas para a classificação de tumores cerebrais a partir de imagens de ressonância magnética. O estudo comparativo visa identificar o impacto do mecanismo de atenção no desempenho da CNN para classificação de tumores. Para desenvolvimento e avaliação dos modelos propostos foi utilizada uma base de dados pública, coletada do website Kaggle, e disponibilizada por Masoud Nickparvar, sendo esta composta por 7023 imagens de ressonâncias magnéticas cerebrais, segmentadas em quatro classes: glioma, meningioma, sem tumor e pituitário. Como resultado, a partir das métricas de desempenho obtidas, considerando a base de imagens usadas para teste em ambas as CNNs, observou-se uma melhora no desempenho da CNN após a introdução do mecanismo de atenção, onde a rede com esse mecanismo apresentou um aumento de 1.98% na métrica acurácia, 2.07% na métrica precisão, 2.18% na métrica sensibilidade e 1.72% na métrica F1-score em relação a CNN sem mecanismo de atenção, podendo ainda ser destacado os resultados obtidos em particular para a classe de tumor meningioma, visto que a CNN sem o mecanismo de atenção apresentou dificuldades para classificação desta classe e, após a integração do mecanismo de atenção o modelo obteve um aumento de acurácia de 6.54% para esta classe.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA