Navegando por Assunto "Auto-associative neural networks"
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Dissertação Acesso aberto (Open Access) Inteligência computacional aplicada à detecção e correção de outliers em séries temporais: estudo de caso em consumo de energia elétrica(Universidade Federal do Pará, 2015-09-04) MELO, Diemisom Carlos Romano de; CASTRO, Adriana Rosa Garcez; http://lattes.cnpq.br/5273686389382860A previsão de consumo de energia elétrica é uma tarefa que requer modelos computacionais bastante acurados para que possam influenciar corretamente na tomada de decisão em usinas hidrelétricas e distribuidoras de energia. Estes modelos computacionais são implementados a partir de um conjunto de dados que deve representar fielmente o comportamento das variáveis. Porém, nesses conjuntos de dados é bastante comum a presença de outliers, que surgem devido a erros de leitura de sensores, erros no próprio sistema de processamento/armazenamento dos dados ou falhas no sistema de distribuição. Este trabalho propõe então uma nova metodologia baseada em Inteligência Computacional para detecção e correção de outliers em séries temporais de consumo de energia elétrica. Uma rede neural artificial auto-associativa é utilizada para detecção de outliers. Posteriormente, esta rede neural, em conjunto com um algoritmo genético, é utilizada para a correção dos outliers detectados. Esta abordagem foi aplicada a uma série temporal de consumo de Energia Elétrica no Estado do Pará. Os resultados obtidos demonstram a eficiência da metodologia proposta, que identificou e corrigiu todos os outliers virtuais introduzidos durante a fase de avaliação da metodologia.Dissertação Acesso aberto (Open Access) Reconhecimento de atividades humanas utilizando redes neurais auto-associativas e dados de smartphone(Universidade Federal do Pará, 2016-12-16) SIQUEIRA, André Luis Carvalho; CASTRO, Adriana Rosa Garcez; http://lattes.cnpq.br/5273686389382860O Reconhecimento de Atividades Humanas (RAH) é uma área de pesquisa importante e desafiadora, com muitas aplicações na área de ambientes inteligentes, saúde e segurança domiciliar. RAH pode ser visto como um processo pelo qual o comportamento de uma pessoa é monitorado e analisado para inferir quais as atividades que estão sendo realizadas em determinado período de tempo. Este trabalho apresenta a criação de dois sistemas para RAH baseado em Redes Neurais Auto-associativas desenvolvidos a partir de um banco de dados público composto por sinais de 6 atividades básicas. Os sinais foram adquiridos a partir de um acelerômetro e giroscópio de um Smartphone e tanto as características extraídas dos sinais no domínio do tempo quanto sinais brutos da aceleração do corpo foram utilizadas para o desenvolvimento dos sistemas de RAH propostos. Os resultados obtidos mostram a eficácia do sistema e a aplicabilidade das Redes Neurais Auto-associativas para o problema de RAH.
