Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Autocorrelation function"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    TeseAcesso aberto (Open Access)
    Métododos de identificação fuzzy para modelos autoregressivos sazonais madiante a função de autocorrelação estendida
    (Universidade Federal do Pará, 2016-12-13) CARVALHO JÚNIOR, José Gracildo de; COSTA JÚNIOR, Carlos Tavares da; http://lattes.cnpq.br/6328549183075122
    Neste estudo, é proposta uma estrategia baseada na metodologia fuzzy para a melhoria do desempenho das previsões de dados mediante um modelo de série temporal. Esta metodologia é concebida para modelagem de processos autoregressivos sazonais de média móvel e pode ser adotada sobre diversas aplicações no mundo real. Por meio da abordagem híbrida, baseada em uma versão da função de autocorrelação fuzzy, a interpolação e as capacidades de generalização de sistemas fuzzy foram exploradas para se obter uma previsão robusta, mesmo considerando séries de curta ou longa duração. A fim de aumentar a precisão do algoritmo de identicação proposto, vários parâmetros de desempenho foram testados e otimizados por simulações computacionais. Os seguintes parâmetros foram considerados nesse processo: o comprimento de trajetória da série histórica, o número de conjuntos fuzzy, e o limite para ativação do suporte dos conjuntos fuzzy triangulares. Observou-se que a função de pertinência triangular contribuiu para a melhoria do desempenho no modelo de previsão. Para demonstrar a eficácia da metodologia proposta, foram implementados quatro estudos de caso a partir de dados disponíveis na literatura. Os resultados confirmaram o bom desempenho do algoritmo proposto, permitindo a obtencão de um erro de previsão pequeno, sobretudo, em comparação com metodologias de identificação parametrica consolidadas na literatura. As projeções produzidas pelo novo método proposto, quando submetidas ao conceito de intervalo de confianca fuzzy, demonstraram uma precisão satisfatoria.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA