Navegando por Assunto "Bacia Hidrográfica do Rio Parnaíba"
Agora exibindo 1 - 4 de 4
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Organofilização de uma Mg-bentonita da bacia do Parnaíba-Sul do Maranhão e sua utilização em poli (metacrilato de metila)(Universidade Federal do Pará, 2014-02-21) CAVALCANTE, Manoella da Silva; http://lattes.cnpq.br/7249500407405478; ANGÉLICA, Rômulo Simões; http://lattes.cnpq.br/7501959623721607Bentonites are clays whose main constituent is a clay mineral of the smectite group, mainly montmorillonite. According to the predominant cation that occupies the interlayer space of the smectite, they can be classified as sodium-, calcium- or magnesian-bentonites. Such clays have wide industrial applications, such as: drilling fluids, pelletizing, foundry molds, among others. For some specific applications that add greater value to the final product, as in the synthesis of polymer/clay nanocomposites, it is necessary to intercalate organic ions in the interlayer of the clay mineral. In Brazil, industrial production of organoclays is small and geared towards the markets of paints, greases and polyester resins. Most companies that exploit bentonites for the traditional uses and do not produce this type of material are showing increasing interest in this new kind of application. In this context, this study aimed to evaluate the potential of the Formosa Bentonite in the production of organoclays and its application in the synthesis of polymer/clay nanocomposites. Formosa is a Mg-bentonite recently described and relatively abundant in northeastern Brazil. For this purpose, synthesis experiments were carried out by varying the concentration of two surfactants: hexadecyltrimethylammonium ions (HDTMA+) and dodecyltrimethylammonium (DTMA+), in the concentrations 0.7, 1.0 and 1.5 times the value of CEC, with reaction time of 12 hours and temperature variation of 25 ºC and 80 ºC. The Mg-bentonite was used as starting material both in natura and activated with sodium carbonate. Both the starting material and the organoclays obtained were characterized by XRD, DTA/TG and FTIR. The clays that exhibited better intercalation results were used in the proportions of 1%, 3% and 10% for further synthesis of the polymer (PMMA)/clay nanocomposites. The XRD results confirmed the intercalation of organic ions in the interlayer space of the Mg-smectite, for both in natura and activated samples. According to FTIR results, it was observed that the ratio of gauche/trans conformers decreases with the increasing of basal spacing. The results of DTA/TG confirm the thermal stability of organoclays at a maximum temperature of 200 °C, allowing the use of such material in the synthesis of polymer/clay nanocomposites obtained by the fusion process. XRD patterns confirmed the intercalation of PMMA in the interlayer space of the Mgsmectite for all nanocomposites produced. With the DSC analysis, it was possible to observe the increase in glass transition temperature for all nanocomposites in comparison with pure PMMA. Thus, it is possible to conclude that the Mg-bentonite can be intercalated with alkylammonium ions, without previous sodium activation, forming organoclays, as well as their use in the synthesis of nanocomposites. This possibility of using natural (non-activated) Mg-bentonite may represent an important difference in terms of process costs, in comparison with existing Ca-bentonites in Brazil, or even the imported, that need to be activated during beneficiation. Finally, one believes that the research should proceed with the evaluation of mechanical properties of the nanocomposites produced in this work, aiming future possibilities of application for such materials.Item Acesso aberto (Open Access) Paleoambiente da formação mosquito e a implantação do sistema desértico úmido da formação corda, jurássico superior, Centro-Oeste da Bacia do Parnaíba(Universidade Federal do Pará, 2013-03-06) RABELO, Cleber Eduardo Neri; NOGUEIRA, Afonso César Rodrigues; http://lattes.cnpq.br/8867836268820998The Mesozoic was marked by significant geological changes, resulting of the Gondwana Orogeny uplifts, which propitiated the implantations of desertic systems concomitantly with expressive magmatic events. In the Parnaíba Basin, northeastern Brazil, these events are recorded in the Triassic Sambaiba Formation, and the Jurassic units, represented by basaltic flows, subordinated fluvial and eolian sandstones of Mosquito Formation and by fluvioaeolian deposits of Corda Formation. Outcrop- and core-based stratigraphic and facies analysis carried out in the Formosa da Serra Negra and Montes Altos regions, State of Maranhão, allowed the paleoenvironmental reconstitution of the Upper Mosquito and Corda formations. Additionally, we infer paleoclimate conditions for the westen-central portion of the Parnaíba Basin during the Jurassic. Were identified twenty sedimentary facies were grouped into five facies associations (FA) representing a volcanic plain deposits with sporadic fluvial and eolian sandstones (FA1- Mosquito Formation), succeeded by the installation of a wet desert system (AF2-AF5; Corda Formation). The volcanic plain (FA1) consists of basaltic flows interbedded with fine to coarse-grained sandstones (intertrap sandstones) composed of subangular to rounded grains of quartz, feldspars and volcanic glass fragments. The sandstones exhibit even parallel and low-angle cross stratifications, filling channel geometry or in tabular beds. Braided channel deposits (FA2) consist of polymictic conglomerates, with subrounded to angular pebbles and granules of basalt, and sandstone with massive bedding and trough cross-bedding. The sandy sheets (FA3) were divided into two architectural elements (AE), the first (AE1) is composed by thin and coarse grained sandstone whit adhesion lamination, adhesion warts, wind and water ripples marks, small-scale gutter cast and load cast structures. The dune field (FA4) is characterized by fine to medium-grained sandstone, with rounded grains, displaying small to medium-scale planar and tangential cross stratification of small to medium size, even parallel and cross laminations, even parallel stratification and subcritically climbing translatent strata. Fine to medium sandstone, moderately selected, beds with rip-up clast, curled mud flakes, flaser bedding and locally massive bedding, are organized in centimetric shallowing upward cycles. In the upper portion of cycles occur iron oxide/hydroxide mottled horizon, bioturbações, root marks and mud cracks interpreted as wet interdune deposits. Suspension lobes deposites (FA5) consist of fine grained sandstones and massive mudstones forming complex cross stratification with low angle and even parallel lamination, wavy and flaser beddings. Kaolinite and iron oxide hydroxide are abundant in FA1 and FA2, and characterize the subaqueous environments, while the abundance of smectite in paleosoils of FA4 indicates semi-arid climate. In the Jurassic, the central western region the Parnaíba Basin, was affected by extensional tectonics with recurrent eruptions of basic lava flow along of fissures system. During the intervals without magmatic activity, sediments supplied of ephemeral rivers were distributed in sheet flow or filled depressions on the volcanic plain. The end of magmatic event was succeeded by implantation of the Corda desert formed by dune field and ephemeral fluvial channels (wadi) that reworked partly the volcanic plain deposits and sandy sheet setting. The Jurassic desent of Corda Formation was wetter and smaller than to the Perm-Triassic ergs (Sambaíba Formation), preceding the extensive and warmer and coastal systems in the Cretaceous of the Parnaíba Basin.Item Acesso aberto (Open Access) Paleoambiente e proveniência da formação cabeças da bacia do Parnaíba: evidências da glaciação famenniana e implicações na potencialidade do reservatório(Universidade Federal do Pará, 2014-06-10) BARBOSA, Roberto César de Mendonça; NOGUEIRA, Afonso César Rodrigues; http://lattes.cnpq.br/8867836268820998The hydrocarbon prospection history of the Paleozoic Parnaíba Basin, northeastern Brazil, has been unfavorable when compared to the putatively large reservoirs of the Pré-Sal of the Coastal basins and the onshore Solimões Basin. However, the discovery of natural gas in the Devonian-Eocarboniferous siliciclastic deposits of the Canindé Group which include Pimenteiras, Cabeças and Longá formations, has motivated new research to improve the paleoenvironmental and paleogeographic interpretations to understand the petroliferous system, the possible plays and the potenciality of the Upper Devonian Cabeças reservoir. Based-outcrop facies and stratigraphic analysis combined with detrital zircon geochronology allowed to interpret the paleoenvironment and the sedimentary provenance from Cabeças reservoir. Six facies association grouped in the succession with up to 60m thick, records the evolution of deltaic system influenced by glacial processes mainly in the top of the unit: 1) distal deltaic front, composed of massive mudstone and conglomerate, sandstone with massive bedding, even parallel lamination and sigmoidal cross-bedding; 2) proximal deltaic front, represented by sandstone with massive bedding, even parallel lamination and sigmoidal cross-bedding sandstone and massive conglomerate; 3) deltaic plain, consisting laminated mudstone, massive conglomerate, sandstone with massive bedding and trough cross-bedding; 4) glacial shoreface, composed by sandstone with rippled bedded and hummocky crossbedding; 5) subglacial deposits, which include massive diamictite, diamictite with sandstone pods and intraformational breccia; and 6) melt-out deltaic front, consisting of sandstone with massive bedding, even parallel lamination, climbing ripple-cross lamination and sigmoidal cross-bedding sandstone, as well as, deformed sandstone. In the Fammenian (374-359 Ma), a fluvial dominated deltaic front prograding to the NW (eastern border of the basin) and to the NE (western border of the basin) on a storm influenced platform (Pimenteiras Formation). In the eastern border of the basin, the paleocurrent pattern and the U-Pb zircon ages spectrum indicate that the Cabeças delta was fed by source lands located in the southeastern of the basin, probably in the Borborema Province. Mesoproterozoic (~ 1.039-1.009 Ma) and Neoproterozoic zircon ages are the most populous, differently of the grains with Archean (~ 2.508-2.678 Ma) and Paleoproterozoic (~ 2.054-1.992 Ma) ages. The youngest concordant zircon grain yielded a 206Pb/238age of 501.20 ± 6.35 Ma (95% concordant) indicating Cambrian source areas. The main sediments source of the Cabeças delta in the eastern border were provide of the Transversal Zone Domain and the Brasilian plutons of the crystalline basement found in the southeast of the Parnaíba Basin. Small contribution of sediments was derived from the Central Ceará and of the Western Rio Grande do Norte domains. In the Famennian, the migration of the Gondwana Supercontinent to the South Pole resulted in the implantation of the glacial conditions concomitant with the sea-level fall and exposure of the coastal region. The advance of the glaciers upon the basement crystalline rocks and deltaic deposits generated erosion, deposition of diamicton with exotic and faceted clasts, as well as, glaciotectonic strucutures such as foliation, boudins, folds, duplex, faults and fractures reflecting a brittle-ductile tangential shear. The unconsolidated and water saturated substrate had temperature slightly below to the melting point of ice (warm permafrost). Sporadic conglomerate lenses (dump structure) in shoreface deposits suggest an ice-rafted process due to icebergs during glacier retreat phase. The increase of the temperature in the Late Famennian reflects the dextral rotation of the Gondwana and South Pole migration from western portion of the South America and to the West Africa. The new paleogeographic configuration positioned the basin in subtropical latitudes initiating the glacier retreat and increase the influence of the isostatic rebound. The structures formed during pressure decrease were clastic sills and dykes, ball-and-pillow structures, beds disruption and intraformational breccia. Thrust faults associated with foliated diamictites in the western border of the basin suggest glaciers migrating to the N-NE. The continuity of the sea-level rise propitiates the implantation of melt-out deltaic system and, afterwards, a transgressive platform (Longá Formation). Diamictites interbedded with deltaic front deposits in the Upper Cabeças Formation correspond intervals with low pore volume and can represent secondary stratigraphic traps in the reservoir. The subglacial primary anisotropies were found in the both borders of the Parnaiba Basin, extend the glacial influence and opens a new perspective about the heterogeneity and effective potentiality of the Cabeças reservoir from the Mesodevonian- Eocarboniferous petroliferous system.Item Acesso aberto (Open Access) A zona de contato entre as formações Motuca e Sambaíba, Permo-Triássico da bacia do Parnaíba, regiões de Filadélfia (TO), Riachão (MA) e Loreto (MA)(Universidade Federal do Pará, 2013-02-17) ABRANTES JÚNIOR, Francisco Romério; ANGÉLICA, Rômulo Simões; http://lattes.cnpq.br/7501959623721607; NOGUEIRA, Afonso César Rodrigues; http://lattes.cnpq.br/8867836268820998The interval between the Late Paleozoic and Early Mesozoic was marked by paleogeographic, and paleoclimatic global changes, partly attributed to catastrophic events. The intense continentalization of the supercontinent Pangaea of Terminal Permian propitiated the development of extensive deserts that succeeded the coastal and platform environments of Early Permian. The records of these events in northern Brazil are found in intracratonic basins, particularly in the Parnaíba Basin, particularly in the contact between the Permian Motuca Formation and Triassic Sambaíba Formation. The Motuca Formation consists predominantly of red laminated mudstone with subordinated lenses of gypsum, calcite and marl. In the eastern Parnaiba Basin, the facies of Motuca Formation become sandier with the expressive occurrence of sigmoidal cross-bedded sandstones. The Sambaíba Formation consists of orange cream sandstones with even parallel stratification and medium- to largescale cross-bedding. Usually, the contact between these units is sharp, where fine sandstones with cross lamination and flaser/wavy bedding (Motuca Formation) are overlaid by sandstones with sin-sedimentary faults/microfaults and convolute lamination (Sambaíba Formation). Fourteen sedimentary facies grouped into four associations (FA) were identified: FA1 – shallow lake / mudflat, FA2 - saline pan, FA3 – sand sheet and FA4 – dunes field. The FA1 interpreted as an extensive, low energy shallow lacustrine environment, with predominance of suspension and sporadically influenced by sand inflow provided of ephemeral rivers. This lake system was probably influenced by expansion and contraction periods due to changes in predominantly arid climate. The most expressive periods of contraction of lake, in the western portion of the Parnaiba Basin, was marked by development of mudflats, ephemeral saturated carbonates ponds and saline pans (FA2).Extensive sandy plains or sand sheet (FA3), locally with wetlands, was intensely reworked by eolian processes. The FA4 is interpreted as part of an erg composed of eolian dune/draas in the saturated sand zone, and subordinate dry interdune. In the contact between Motuca and Sambaiba formations occurs a deformed interval, laterally continuous for hundreds of kilometers. Brecciated and contorted bedded siltstones and mudstone (Motuca Formation) and sandstone with sinsedimentary faults/microfaults, convolute lamination and mud-filled injection dykes (Sambaíba Formation) are interpreted as seismites triggered by high magnitude earthquakes (>8 according Richter scale).Geochemical anomalies of trace elements such as Mn, Cr, Co, Cu and Ni in the contact zone between the formations, together with the presence of microparticles of metallic composition in the clay matrix of these seismites, corroborate with meteorite impacts event in the Permian-Triassic boundary, related Riachão impact structure.