Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Bamboo"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 2 de 2
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Análise mecânica e microestrutural da interação do bambu com o concreto
    (Universidade Federal do Pará, 2018-04-03) SALGADO NETO, Francisco de Souza; PICANÇO, Marcelo de Souza; http://lattes.cnpq.br/4535052395600357
    Several materials have been used in construction, steel and concrete being the most used. However, such materials present high production costs and generate great impacts to the environment. The purpose of this research is to analyze the interaction between concrete and bamboo of the species Dendrocalamus giganteus as well as to verify the potential of the annealed wire as a reinforcement of bond between the above-mentioned materials, justified by the search for alternative and renewable materials concomitantly with the defense of sustainability. The experimental schedule is divided into 3 stages: morphological, physical and mechanical characterization of bamboo; concrete dosing; and study of bamboo concrete interaction, analyzing the use of two types of wrapping wire on the bamboo surface as a mechanism of bond reinforcement: single spiral and double spiral, from the determination of the bond strength at 28 days for each case, of the load x displacement behavior and the microstructural analysis of the concrete bamboo interaction. The fixed factors were: compressive strength of the concrete (28 MPa), 200 mm is the length of bonded interface, bamboo sticks with rectangular section of 20 mm x 10 mm. All the results obtained were analyzed by statistical tests and it was verified that the presence of the node and the use of wire increases the bond strength by 42% and at least 25%, respectively.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Concreto reforçado com fibras de bambu (Dendrocalamus Giganteus)
    (Universidade Federal do Pará, 2019-11-14) FERNANDES, Robson da Silva; PICANÇO, Marcelo de Souza; http://lattes.cnpq.br/4535052395600357; https://orcid.org/0000-0001-7313-1229
    Vegetable fibers appear as an alternative to manufacture structural elements in relation to metal and synthetic fibers that have high costs, also causing pollution to the environment due to their manufacturing process. This study analyzes the results of mechanical tests of a fiber reinforced concrete of bamboo bark (Dendrocalamus Giganteus), for use in cementitious plates, obtained experimentally in cylindrical and prismatic specimens according to ABNT standards and international recommendations. Composite traces were determined by means of a pilot study, 1: 2.12: 2.88: 0.58 using the CP-IV pozzolanic cement. The experimental program consisted of a 25 MPa Fck reference concrete and three dosages corresponding to 0.5%, 1.0% and 1.5% by volume of bamboo fiber to the concrete mass, forming four dosages in total. After curing, according to NBR 5738 (2003), prismatic specimens were tested for flexural tensile strength according to NBR 12142 (2010) / JSCE-SF4 (1984) and cylindrical specimens to evaluate the strength. from CRB to axial compression, according to NBR 5739 (2018), to diametric compression tensile, according to NBR 7222 (2011) and static modulus of elasticity, according to NBR 8522 (2008). In the axial compression test the presence of bamboo did not provide an increase of resistance in relation to the reference concrete. However for the tensile and flexural strength, the mixing with the addition of bamboo fiber generated a strength gain of 7% and 9%, respectively, compared to the concrete without addition. It can be concluded that insertion of fiber from bamboo bark increases the tensile strength of the composite.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA