Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Beam Tracking"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Beam tracking using deep learning applied to 6G MIMO
    (Universidade Federal do Pará, 2024-12-16) OLIVEIRA, Ailton Pinto de; KLAUTAU JÚNIOR, Aldebaro Barreto da Rocha; http://lattes.cnpq.br/1596629769697284
    This work explores the application of machine learning to enhance beam tracking in 6G MIMO Vehicle-to-Infrastructure (V2I) communications. Beam tracking, essential for sustaining reliable mmWave connections, remains challenging due to the high mobility of vehicular environments and the significant overhead associated with millimeter wave MIMO beamforming. While beam selection has been extensively studied, ML-based beam tracking is relatively underexplored, largely due to the scarcity of comprehensive datasets. To bridge this gap, this study introduces a novel public multimodal dataset, designed in accordance with 3GPP requirements, which combines wireless channel data with multimodal sensor information. This dataset supports the evaluation of advanced data fusion algorithms specifically tailored to V2I scenarios. Furthermore, a custom recurrent neural network (RNN) architecture is proposed as a robust solution for effective beam tracking, leveraging temporal and multimodal data to address the challenges of dynamic vehicular communications.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA