Navegando por Assunto "Biomaterial"
Agora exibindo 1 - 4 de 4
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Manufatura aditiva de biocompósitos a partir de ácido poliláctico reforçado por hidroxiapatita e nanotubos de carbono para regeneração de tecido ósseo(Universidade Federal do Pará, 2024-01-22) BELO, Francilene da Luz; REIS, Marcos Allan Leite dos; http://lattes.cnpq.br/8252507933374637; CANDIDO, Verônica Scarpini; http://lattes.cnpq.br/8274665115727809Bone tissue is one of the most important tissues in the human body. Unfortunately, some traumatic events can cause fractures that can lead to temporary or permanent disability. Scaffolds are some of the materials that help in the treatment of these fractures, as they play an important role in the bone repair process and can be manufactured by 3D printing. Polylactic acid (PLA), as it is biodegradable, is one of the materials used in the production of scaffolds. Furthermore, the association of PLA and hydroxyapatite (HA) in its manufacture has shown excellent results, accelerating bone regeneration and reducing healing time. Another promising material for making scaffolds are carbon nanotubes (CNT), which have excellent mechanical properties and also accelerate bone growth. Thus, the main objective of this study was to produce scaffolds by additive manufacturing from polylactic acid (PLA) reinforced with hydroxyapatite (HA) and carbon nanotubes (CNT), to be applied in the regeneration of bone tissue and characterized through mechanical and biological. Hydroxyapatite was synthesized by wet means and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), presenting phases characteristic of HA, characteristic groups and a morphology with a porous surface with varying particle sizes, important characteristics for a biomaterial. The pure PLA, PLA/HA and PLA/NTC scaffolds were produced by additive manufacturing with an opening between the walls of 1 mm and 2 mm and characterized through mechanical tests and biological tests. Furthermore, PLA/NTC scaffold samples were impregnated with HA on the surface by thermal and chemical treatment to evaluate the influence of ceramics on the composite surface. The micrograph of the scaffolds showed that the addition of CNT made the PLA surface rougher compared to the sample containing HA; The TGA curves suggested that temperature may favor the thermal stability of PLA/NTC scaffolds impregnated with HA on the surface; Ramam showed an interaction between hydroxyapatite on the CNT surface and a possible structural transformation of PLA/CNT; In compression tests, PLA/NTC scaffolds with an opening between the walls of 1 mm showed better compression resistance; In cell viability assays, fibroblasts incubated with pure PLA, PLA/HA and PLA/NTC scaffolds showed high viability after evaluation by the MTT assay for the two forms of preparation (heat treatment impregnation and chemical treatment impregnation and for the two openings between the walls. More than 85% of the cells remained viable after 48h of incubation with all scaffolds tested, with the groups that had NTC in their composition showing the best results, both for heat treatment (more than 95% of cell viability) as well as chemical treatment (acetone). Given the results presented, it is concluded that PLA scaffold reinforced with HA and CNT may be promising as a biomaterial used to aid in the regeneration of bone tissue, contributing to the reduction of time hospitalization of patients suffering from bone fractures.Item Acesso aberto (Open Access) Métodos de obtenção e caracterização de biomembrana de quitosana e copaíba para potencial uso em feridas(Universidade Federal do Pará, 2022-06-14) PARANHOS, Sheila Barbosa; PASSOS, Marcele Fonseca; http://lattes.cnpq.br/0588450144351187; https://orcid.org/0000-0002-5616-2127; CANDIDO, Verônica Scarpini; http://lattes.cnpq.br/8274665115727809; https://orcid.org/0000-0002-3926-0403Health professionals deal directly with several complex situations in the care of sick people. Among these, there are skin wounds that can harm the patient's clinical condition, in addition to costly treatment for healing. Skin wounds require dressings to protect against pathogenic microorganisms and to accelerate the healing process. With the emergence of biomaterials available for use in wound treatment, chitosan has become an effective choice, easily found in a natural and renewable form with healing potential. The chitosan membrane presents ideal conditions in the treatment of wounds, such as absorption, protection, biocompatibility and antimicrobial potential. To increase its healing effects, natural oils have been incorporated into the polymer matrix, such as copaiba, which has a high anti-inflammatory action. In this context, the work aimed to obtain and characterize chitosan membranes by emulsion and nanoemulsion of copaiba oil to treat skin wounds. The chitosan membranes with oil addition by emulsion and nanoemulsion were synthesized by the solvent evaporation technique. They were evaluated by macroscopic analysis and characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, swelling percentage, humidity, contact angle. An in vitro assay of antibacterial activity against the bacterium S.aureus was carried out. The membranes had an apparently thin appearance, little malleability, relative opacity, continuous and good handling. He observed more porosity on the surfaces of membranes synthesized by nanoemulsion of copaiba oil, in addition to a more amorphous behavior. He noticed a better interaction between chitosan and oil constituents when the oil synthesis was prepared by nanoemulsion, resulting in improved stability of the material produced. The swelling percentages were higher in the MQCoN-0.1 (214±3.22%) compositions when immersed in water and the MQCoN-5.0 composition (220±6.83%) in the PBS solution. The wetter behavior was significant in membranes composed of 0.1% (0.80±1.37%) and 0.5% (3.00 ±0.79%) copaiba oil nanoemulsions. There was no great influence on the contact angle between syntheses and compositions. The chitosan membrane with 1.0% (v/v) of emulsified oil and the chitosan membrane with 0.5% (v/v) of nanoemulsified oil were the most hydrophilic membranes. All membranes were able to inhibit bacterial growth, except the chitosan membrane with 1.0%(v/v) oil emulsion. Materials obtained by nanoemulsion have ideal attributes for application in the use of skin wounds.Item Acesso aberto (Open Access) Síntese e caracterização de cerâmicas bifásicas de fosfatos de cálcio (HA / β-TCP) a partir de nanocelulose do tegumento do açaí (Euterpe oleracea Mart.)(Universidade Federal do Pará, 2018-10-31) VALENTIM, Rachel Margalho Barreira; DIAS, Carmen Gilda Barroso Tavares; http://lattes.cnpq.br/2113791118142177; REIS, Marcos Allan Leite dos; http://lattes.cnpq.br/8252507933374637The remnants of the açaí agribusiness (Euterpe Oleracea Mart) are sources of lignocellulosic materials. The extraction of nanocellulose from the açaí integument constitutes viable raw material for the synthesis of biphasic ceramics (HA / β-TCP) by acid hydrolysis. After the fruit pulp is obtained a biomass that is divided into three fractions: sludge (parenchyma), fiber (monostelo) and endocarp. The integument is analyzed by MEV / EDS, through the endocarp of açaí of terra firme and of várzea presenting essential nutrients, to obtain ceramics of phosphates of calcium. The biocomposite (NC / HA / β-TCP) was characterized by MEV, presenting crystalline species on the surface of the nanocellulose; X-ray diffraction presenting HA nucleation attributed to type I cellulose and tricalcium phosphate (β-TCP) on the surface of cellulose type II; showing the growth of HA crystals on the surface of the nanocellulose. The FTIR analysis showed characteristic peaks of PO4-3, C1-H glycosidic deformation at 897 cm -1 attributed to cellulose, strong C-C conjugate binding at 1609 cm -1 attributed to lignin showing a decrease in content during the process. The results of particle size are in the nanometric dimension showing 643.50 nm as the most common value related to the results of the zeta potential presenting unstable particles producing particles aggregation and stable particles with modulus value greater than 20 mV. Due to the characteristics presented by the biphasic ceramic synthesized in this work it is suggested its application as biomaterial.Item Acesso aberto (Open Access) Síntese e Caracterização de Membrana de Quitosana com Extrato de Banana Verde e Andiroba para Cicatrização de Lesões Epiteliais(Universidade Federal do Pará, 2022-03-21) FERREIRA, Elisângela da Silva; CANDIDO, Verônica Scarpini; http://lattes.cnpq.br/8274665115727809; https://orcid.org/0000-0002-3926-0403Biomaterials must enable the surrounging healthy cells to grow and replace the matrix that constitutes the material. The application of other bioactives is being widely studied, as well as the incorporation of phytosan into chemical removal films in wound healing by different techniques. This study aimed to synthesize and characterize chitosan membranes, green banana peel extract and andiroba oil for application in epithelial devices. Membranes were made in different compositions and characterization tests were carried out on the synthesizer. Andiroba oil was added in pure form or oil-in-water (O/W) emulsion in the chitosan solution. Higher in chitosan membranes with emulsion O/W, being 978.79 % e 423.64 %, in Nano M6 and Nano M11, respectively, after 24 hours of life in water. The highest percentage of moisture was in M7 (24.9 ± 3.8 %) and the lowest in Nano M7 (13.46 ± 0.8 %). All samples are hydrophilic, with lower values with banana peel extracts from the first decoction, M1 (24.0° ± 1.9°) and Nano M6 (23.7° ± 4.3°). Diffractograms are mostly amorphous material, for the most part. Thermal analysis has greater stability of chitosan membranes synthesized with banana peel extract and addition of andiroba oil. Spectroscopy showed characteristic peaks and bands of sample components and interaction between these components, as well as suggestion or encapsulation of the oil. The material first presented characteristics of absorption of liquids and synthesized, in particular the membranes of banana extraction of the day of decoction interaction and with addition of O/W emulsions, with greater possibility of duration of its healing of composting epithelial deficiencies.