Navegando por Assunto "Caulinita - Paragominas (PA)"
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Cristaloquímica da sodalita Bayer derivada de bauxitas com alta sílica reativa de Paragominas-Pa(Universidade Federal do Pará, 2016-05-24) MELO, Caio César Amorim de; ANGÉLICA, Rômulo Simões; http://lattes.cnpq.br/7501959623721607In the Paragomina’s region, as well as the whole Brazilian north, gibbisitic bauxite deposits commonly shows high amount of kaolinite. The processing of this bauxites (called as High Silica Bauxites - BASR) became a challenge because in the conventional conditions of the Bayer process, the kaolinite is undesirably leached by NaOH solution, and then precipitated as sodalite. The formation of this phase brings a significant increase in process costs, both by increasing the processing time as the irreversible loss of NaOH robbed from the system to form sodalite, which is then discarded in the red mud. Given this metallurgical problem this study aimed to investigate the crystal chemistry of sodalite formed in conventional conditions of the Bayer process, so that, from these results, studies to reduce these losses of the process and facilitate the processing of BARS can be developed in the future. The materials investigated were kaolinitic gangues from 4 lithologies of an exploration well in Miltonia 3 mine (BN, BNC, BC and BCBA), as well as a kaolin from IMERYS S.A. The digestions were carried out in Teflon-lined, stainless steel autoclaves, using 1 g of solid material, 25 mL of NaOH solution and at a temperature of 150ºC in an oven. The NaOH concentration and the reaction time ranged from 2,5 to 5,0 M and 60 to 420 min, respectively. Then the solid material was characterized by XRD, DTA/TG, FTIR, SEM and ICP-OES. The results of the starting materials showed that the kaolin sample is essentially constituted by kaolinite, which has a high structural ordering degree. All the samples of kaolinitic gangue showed the same minerals: gibbsite, kaolinite, hematite, goethite and anatase. By the observation of the XRD patterns and DTA curves can be noted that the BN and BNC samples are more reactive than the others, possibly due a lower structural ordering degree and particle size. In the experiments with kaolin, it can be observed that are formed not one, but two sodalite phases, which coexist practically throughout the whole process and tending to an equilibrium phase. These two phases differs themselves by the amount and behavior of the NaOH and H2O molecules within the framework. The results of the refinments showed that these phases were: basic sodalita with cell parameter (ao) ~ 8,96 Å, which is predominant in the initial stages of the transformation, and hydrosodalite with ao ~ 8,85 Å dominant in the secondary stage (mainly in 180 min). The XRD results from kaolinitic gangues showed that in 60 min there was no full kaolinite/sodalite conversion, and the sodalite patterns in BN and BNC were more intense and well defined than BC and BCBA, confirming that these samples have more reactive kaolinites. The increase of the reaction time and NaOH concentration provided a slight increase of the structural sodalite order. It may be noted that in almost all experiments the only phase formed was basic sodalite. The exceptions were the lithologies: BCBA and BC, which hydrosodalite was formed in the highest time of reaction and NaOH concentration, thus showing that this phase is directly associated with a higher time, concentration and crystallinity of kaolinite available in the reaction medium. It can be observed that throughout the reaction, in shorter time and concentration it is not possible to achieve a balance, which leads to a constant interchange of predominant phase in the system. In the higher time and concentration experiments, a balance is virtually reached, in order that it cannot be observed separated diffraction peaks. However there is no significant increase of the structural ordering even for extreme times as 3 days of reaction. The ammonium chloride experiments showed that this reaction medium allows the formation of more crystalline phases than all others achieved in this research. However, it did not result in the diminished of the sodium consumption.Item Acesso aberto (Open Access) Mineralogia e geoquímica dos perfis bauxíticos da mina Miltônia 3, região de Paragominas/PA(Universidade Federal do Pará, 2015-10-16) PEREIRA, Carla Braga; ANGÉLICA, Rômulo Simões; http://lattes.cnpq.br/7501959623721607The Paragominas Bauxite Province is located in eastern of Pará state and western of Maranhão state, occupying the NW portion of Grajaú Basin and the southern of Bragantina platform, with an area of approximately 50.000 km2. The important bauxite deposites from that area were originated by an intense chemistry weathering above siliciclastic rocks from Cretaceous age. This research focus on the mineralogical e geochemistry studies of bauxite profiles in the area of Bauxite mine that belongs to the Norsk Hydro Company, in Miltonia 3 mine, municipality of Paragominas, Pará state. This research aims to contribute to understanding of the origin and developing of these profiles. Were conducted two sample collections of lateritic profiles representatives of Miltonia 3 mine, following the chemistry, mineralogy and texture differences of the horizons that structures the studied profiles. We used the following methodological procedures and/or instrumental techniques: X-rays Diffraction (XRD), Scanning Electron Microscopy (SEM), petrology and chemical analysis. The lateritic profiles studied in this research were described according to their horizons structuring: Amorphous Bauxite (AB), Crystallized Amorphous Bauxite (CAB), Crystallized Bauxite (CB), Ferruginous Laterite (FL). In the profile 1, the overlying horizon to FL is described as Nodular Bauxite (NB), while in the profile 2, it is the Crystallized Nodular Bauxite (BNC). Both of these profiles are covered by unconsolidated sandy-clay horizon, with an orange red coloring, called by many authors as Belterra clay. Petrographically, the horizons show the following typical mineral of a bauxitic/lateritic profile: gibbsite, kaolinite, goethite, hematite e anatase. This paragenesis was confirmed by XRD analysis, which the mineral content varies for each horizon. Allied to the SEM analysis it is possible to describe the morphologic aspect of gibbsite and kaolinite crystals. It is noticeable the presence of three gibbsite generations, which the precocious phase is part of matrix, sometimes, associated with iron oxide-hydroxide, showing a cryptocrystalline character. The second generation comprises microcrystalline crystals that fill partially or totally pores. The latest generation is cryptocrystalline crystal found occupying totally or covering the cavity walls of cutans. The geochemical pattern of Al2O3, Fe2O3, SiO2 and TiO2 residual phases are similar in both profiles, as well as the contents of Al2O3_available e SiO2_reactive. Over the profile, the contents of SiO2 e SiO2_reactive are more expressive in the most clayey layers, and they reflect the kaolinite content. The content of Al2O3_available has the same Al2O3 behavior due to: the first is related to gibbsite, the most elevated contents are in top of AB, CAB e CB, and the last represents the most economically exploitable level. According to the order/disorder degree of this kaolinite in the soil profile, it was verified an elevation of the FWHM (Full Width at Half Maximum) results from base towards top, that showed the possibilities of: 1) kaolinite degradation with the process of developing of lateritic profile; and/or neoformations of new kaolinite generations with low crystallinity. The new data furnished during the analysis give support to understand the process that produced the mineralogical, chemistry and textural differences and similarities that exist between bauxite horizons, as well as the recovery of bauxitization process (two phases of bauxitization) that resulted in formation of Nodular Bauxite (NB) and Crystallized Nodular Bauxite horizons, leading the hypothesis of polyphasic and complex evolution of studied profile, wich culminated in the origin of bauxitic/lateritic deposits.