Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Clusterization"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Estratégia para predição de consumo de energia elétrica de curto prazo: uma abordagem baseada em densificação com MEAN SHIFT para tratamento de dias especiais
    (Universidade Federal do Pará, 2016-11-04) RÊGO, Liviane Ponte; FRANCÊS, Carlos Renato Lisboa; http://lattes.cnpq.br/7458287841862567; SANTANA, Ádamo Lima de; http://lattes.cnpq.br/4073088744952858
    The use of short-term prediction strategies is an important tool for planning and operation of electrical systems, playing a crucial part in aiding the decision support process for buying and selling of electricity in the future market. For the energy market, in particular, an important component to take into account for consumption forecasting are the special days (holidays or atypical days, for example). Given its unusual behavior, the estimation of such events can be a complex task, when compared to the forecasting of ordinary days. In addition, as they are often found with only a small number of samples, it is difficult to adequately train and validate prediction algorithms. To tackle these problems, this work presents a model for short-term load forecasting using the Information Theoretic Learning Mean-Shift model to clustering and densify the sample size of special days's events on a time series, there on followed by the prediction using statistical and/or machine learning algorithms; in this work represented by artificial neural network algorithms and multiple Linear regression. The model was applied in a load forecasting problem for the electric utility in the northern region of Brazil, providing an improvement in the accuracy of results.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA