Navegando por Assunto "Control theory"
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Dissertação Acesso aberto (Open Access) Analysis of classical and advanced control techniques tuned with reinforcement learning(Universidade Federal do Pará, 2023-09-01) SILVA, Daniel Abreu Macedo da; SILVEIRA, Antonio da Silva; http://lattes.cnpq.br/1828468407562753A teoria de controle é utilizada para estabilizar sistemas e obter respostas específicas para cada tipo de processo. Controladores clássicos, como o PID utilizado nesta pesquisa, são difundidos globalmente nas indústrias, isto por possuírem topologias bem estudadas pela literatura e serem facilmente aplicados em microcontroladores ou controladores lógico programáveis; já os avançados, como GMV, GPC e LQR também utilizados neste trabalho, possuem certa resistência em aplicações comuns das indústrias de base, mas são muito utilizados em sistemas de energia, aerospaciais e robóticos, pois a complexidade e estrutura desses métodos gera robustez e alcança desempenhos satisfatórios para processos de difícil controle. Neste trabalho, esses métodos são estudados e avaliados com uma abordagem de sintonia que utiliza o aprendizado por reforço. São aplicadas duas formas de sintonia para os controladores, estas são o método da Repetição e Melhora e o método de Jogos Diferenciais. O primeiro utiliza iterações offline, onde o agente do processo é a técnica de controle escolhida, que trabalha com os índices de desempenho e robustez como ambiente (métrica de como o processo está evoluindo), sendo capaz de organizar uma política de ajuste para o controlador, que se baseia em recompensar o fator de ponderação até obter o critério de parada do processo (resposta desejada). O segundo método se baseia em utilizar estratégias de reforço que recompensam o controlador conforme a resposta se modifica, assim o LQR aprende as políticas de controle ideais, adaptando se às mudanças do ambiente, o que permite obter melhor desempenho por recalcular os tradicionais ganhos encontrados com a equação de Ricatti para sintonia do regulador; neste método, os jogos diferenciais são utilizados como uma estrutura para modelar e analisar sistemas dinâmicos com múltiplos agentes. Para validar o que é apresentado, o Motor Tacogerador e o Ar Drone são escolhidos. O Motor Tacogerador é modelado com a estimação dos mínimos quadrados em uma estrutura ARX-SISO para avaliação do primeiro método de sintonia. O Ar Drone é modelado com uma abordagem em espaço de estados para avaliação do segundo método de sintonia.Tese Acesso aberto (Open Access) Controle inteligente LQR neuro-genético para alocação de autoestrutura em sistemas dinâmicos multivariáveis(Universidade Federal do Pará, 2008-08-30) ABREU, Ivanildo Silva; FONSECA NETO, João Viana da; http://lattes.cnpq.br/0029055473709795Nesta tese é apresentado um modelo neuro-genético, orientado a síntese de controladores no espaço de estado baseado no projeto do Regulador Linear Quadrático, para alocação de autoestrutura em sistemas dinâmicos multivariáveis. O modelo neuro-genético representa uma fusão de um algoritmo genético e uma rede neural recorrente para realizar a seleção das matrizes de ponderação e resolver a equação algébrica de Riccati, respectivamente. Um modelo de 6a ordem de uma aeronave, um modelo de 6a ordem de um gerador de indução duplamente alimentado de uma planta eólica e um modelo de 4a ordem de um circuito elétrico, são usados para avaliar a fusão dos paradigmas de inteligência computacional e o desempenho da metodologia do projeto de controle. O desempenho dos modelos neuro-genéticos são avaliados por momentos estatísticos de primeira e segunda ordem para o algoritmo genético, enquanto que a rede neural é avaliada por superfícies da função energia e da norma do infinito da equação algébrica de Riccati. São feitas comparações com o método de Schur.
