Navegando por Assunto "Coordinate attention"
Agora exibindo 1 - 1 de 1
- Resultados por página
- Opções de Ordenação
Dissertação Acesso aberto (Open Access) Análise de desempenho de mecanismos de atenção para estimativa de pose 2D baseada em resnet-50(Universidade Federal do Pará, 2025-09-11) MALHEIROS, Marlon Nanael Leitão; CASTRO, Adriana Rosa Garcez; http://lattes.cnpq.br/5273686389382860; https://orcid.org/0000-0001-5884-4511; ARAÚJO, Jasmine Priscyla Leite de; FONSECA, Maria da Conceição Pereira; OHASHI JÚNIOR, Orlando Shigueo; http://lattes.cnpq.br/4001747699670004; http://lattes.cnpq.br/3496755183083633; http://lattes.cnpq.br/8905793797626608; https://orcid.org/0000-0003-3514-0401; xxx; xxxA estimação de pose humana 2D é um problema fundamental em visão computacional que visa identificar a localização de pontos anatômicos humanos. A evolução do aprendizado profundo, em particular das Redes Neurais Convolucionais (CNNs), tem proporcionado avanços significativos no campo. Recentemente, a introdução de mecanismos de atenção se destacou como uma abordagem eficaz para aprimorar o foco das CNNs em regiões importantes das imagens. Esta dissertação apresenta um estudo comparativo do impacto de seis mecanismos de atenção na tarefa de estimação de pose humana 2D, integrando-os a uma arquitetura CNN baseada em ResNet-50: Convolutional Block Attention Module (CBAM), Coordinate Attention, Global Context Attention, Self-Attention, Multi-Head Attention e SimAM (Simple, Parameter Free Attention Module). O treinamento e a avaliação dos modelos utilizaram o conjunto de imagens MS COCO (Common Objects in Context) sob um protocolo experimental unificado. Os resultados quantitativos demonstraram que todos os mecanismos de atenção testados melhoraram o desempenho da arquitetura base. Os mecanismos CBAM e Coordinate Attention mostraram-se os mais eficazes, com os maiores ganhos na métrica principal Average Precision (AP). O modelo com Coordinate Attention alcançou uma AP de 67,7% (+1,5 p.p.), enquanto o modelo com CBAMatingiu 67,6% (+1,4 p.p.), obtendo também a melhor pontuação na métrica secundária AP75. A análise de custo-benefício revelou que CBAM e Coordinate Attention alcançaram esses ganhos com acréscimo mínimo de parâmetros e FLOPS. Em contraste, Self-Attention, de maior custo computacional, apresentou um dos menores ganhos, enquanto SimAM, livre de parâmetros, obteve o menor ganho sem custo adicional. Em síntese, os resultados demonstram que a integração de mecanismos de atenção é uma estratégia eficaz para aprimorar modelos de estimação de pose, destacando-se abordagens com ênfase em informação espacial explícita, como CBAMeCoordinate Attention, por oferecerem um excelente equilíbrio entre desempenho e eficiência computacional.
