Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Cumulative probability functions"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    DissertaçãoAcesso aberto (Open Access)
    Modelagem estocástica de função cumulativa de probabilidades de precipitação diária na região hidrográfica tocantins-araguaia (RHTA)
    (Universidade Federal do Pará, 2019-03-28) PROGÊNIO, Mayke Feitosa; BLANCO, Claudio José Cavalcante; http://lattes.cnpq.br/8319326553139808
    Conhecer o comportamento temporal e espacial da probabilidade de ocorrência de precipitação pluviométrica é indispensável para o planejamento e gestão das atividades agrícolas e agroindustriais. Entretanto, em algumas bacias hidrográficas as séries históricas de precipitação disponíveis são geralmente curtas e com grande número de falhas, o que dificulta as análises estatísticas. Assim, o objetivo do trabalho foi desenvolver um modelo estocástico de função cumulativa de probabilidades de precipitação diária na região hidrográfica Tocantins Araguaia-RHTA. O modelo é do tipo paramétrico, no qual as ocorrências das precipitações foram determinadas através da cadeia de Markov (CM) de 1ª ordem e as quantidades de precipitação foram estimadas por 4 funções cumulativas de probabilidade (FCPs) sendo elas: exponencial simples, exponencial a dois parâmetros, exponencial mista e gama. Os parâmetros das FCPs foram estimados pelo Método da Máxima Verossimilhança. O processo de simulação foi realizado separadamente para cada estação pluviométrica, sem considerar a correlação espacial entre elas. O modelo desenvolvido foi aplicado em 196 estações pluviométricas distribuídas em 3 regiões homogêneas (RH) de precipitação na RHTA. Os resultados mostraram que a CM de 1ª ordem foi capaz de reproduzir de forma satisfatória a quantidade de dias secos e chuvosos. No entanto, nas áreas fortemente influenciadas por longas séries de estiagem, os resultados não foram satisfatórios. Em relação à estimativa das quantidades precipitadas, o teste Kolmogorov-Smirnov (KS) e o gráfico de probabilidade-probabilidade (P-P) mostraram que a exponencial mista foi a que apresentou melhores aderências aos dados observados para a maioria dos meses do ano, com exceção dos meses menos chuvosos de junho, julho e agosto na RH II e RH III, e nos meses de setembro, outubro e novembro para a RH I, para os quais a função gama se mostrou mais eficiente, estes resultados também foram confirmados pelos baixos valores de Root Mean Square Error (RMSE) e Mean absolute Error (MAE). Assim, o modelo desenvolvido mostrou-se eficiente na estimativa de precipitações médias diárias na RHTA, além disso, o uso de mais de uma FCP proporcionou ao modelo maior capacidade de estimar as precipitações em diferentes locais e estações do ano.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2026 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA