Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Densidade espectral de potência"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    DissertaçãoAcesso aberto (Open Access)
    Classificação de eletroencefalogramas epiléticos em estado de repouso com aplicação de classificadores lineares e um atributo derivado da densidade espectral de potência
    (Universidade Federal do Pará, 2019-12-04) FIEL, José de Santana; PEREIRA JÚNIOR, Antonio; http://lattes.cnpq.br/3239362677711162
    Milhões de brasileiros são afetados pela epilepsia e o acesso ao diagnóstico precoce é crucial para o seu tratamento adequado. No entanto, o diagnóstico de epilepsia depende da avaliação de registros eletroencefalográficos (EEG) de longa duração realizados por profissionais treinados, transformando-o em um processo oneroso que não está imediatamente disponível para muitos pacientes no Brasil. Assim, o presente trabalho propõe uma metodologia para a classificação automática do EEG de indivíduos epiléticos, que utiliza registros de EEG de curta duração obtidos com o paciente em repouso. O sistema é baseado em algoritmos de aprendizado de máquina que usam um atributo extraído da densidade espectral de potência dos sinais de EEG. Esse atributo é uma estimativa da conectividade funcional entre os pares de canais de EEG e é chamado debiased weighted phase-lag index (dWPLI). Os algoritmos de classificação foram análise discriminante linear (LDA) e máquinas de vetores de suporte (SVM). Os sinais de EEG foram adquiridos durante o estado interictal, isto é, entre convulsões e não tinham atividade epileptiforme. Registros EEG 11 pacientes epiléticos e 7 indivíduos saudáveis foram utilizados para avaliar o desempenho do método proposto. Ambos os algoritmos atingiram seu desempenho máximo de classificação, 100 % de precisão e área sob a curva de característica de operação do receptor (AUROC), quando um vetor de característica com 190 atributos foi usado como entrada. Os resultados mostram a eficácia do sistema proposto, dado seu alto desempenho de classificação.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA