Navegando por Assunto "Docagem Molecular"
Agora exibindo 1 - 1 de 1
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Interações de Quantum Dot com estruturas externas de vírus Nipah utilizando docking e dinâmica molecular(Universidade Federal do Pará, 2023-01-30) ALMEIDA, Aguinaldo Pantoja de; OLIVEIRA, Mozaniel Santana de; http://lattes.cnpq.br/0810227136654245; HTTPS://ORCID.ORG/0000-0002-4076-2443; CHAVES NETO, Antônio Maia de Jesus; http://lattes.cnpq.br/3507474637884699; https://orcid.org/0000-0002-9730-3512Performing the interaction of the outermost protein of the Nipah virus with fourteen structures with possible potential for the emission of quantum dots, using anchoring and molecular dynamics, using molecular docking platforms: CB Docking, Swiss DOCK, AutoDock Vina 4.2.6 to perform a comparison of results explaining the best values, in addition to using Gromacs 2022 to make ligand trajectories in relation to time. The mostly hydrophobic complexes at the receptor binding site. The tolerance energy results tolerated the partial loads of the tips which showed better stability, the RMSD results also respected this premise. Thus, the set formed by combining proteins with a quantum dot has the potential to more efficiently adsorbing of the protein components of the virus. Molecular dynamics and docking studies and verification of binding energy revealed strong and stable binding between para QD K and QD-G and QD-F with the macrostructure of NIPAH virus. It was established in the docking studies, that the binders have emission energy scores of -13,658 kcal/mol, -13.6 kcal/mol, -13.9 kcal/mol, for K, G and F respectively. The same result was applied in the Gibbs free energy verification study with values for F of 239.00 kcal/mol, G of 246.65 kcal/mol and K of 259.52 kcal/mol.