Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Dynamic modeling"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    DissertaçãoAcesso aberto (Open Access)
    Modelagem neural da resistência elétrica dos fornos de redução do alumínio
    (Universidade Federal do Pará, 2015-10-16) CONTE, Thiago Nicolau Magalhães de Souza; OLIVEIRA, Roberto Célio Limão de; http://lattes.cnpq.br/4497607460894318
    Este trabalho avalia dois tipos de Redes Neurais Artificiais na tarefa de modelar dinamicamente o comportamento da resistência elétrica de um forno de redução de alumínio primário. A proposta é utilizar Redes Neurais Multicamada Diretas (RNMD) e Redes Neurais Recorrentes (RNR) para modelar a resistência elétrica do forno. Para cada uma destas Redes Neurais é explorado a sua capacidade de modelar sistemas dinâmicos, seja variando o número de camadas de neurônios, bem como o número de neurônios em cada camada, variando também os sinais de entrada da rede neural, etc. Os dados a serem utilizados na modelagem são oriundos de uma fábrica brasileira de alumínio primário. Esta modelagem pode ser usada para controlar a distância (subir ou descer) entre os eletrodos anodos e catodos do forno de redução que são constituídos principalmente por materiais carbonáceos. Desta forma o sistema de controle possui a tarefa de manter o valor de resistência dentro de faixas aceitáveis de operação procurando sempre garantir estabilidade térmica e consequentemente a produção do alumínio primário, com alto teor de pureza, com base em dados disponíveis online no sistema de controle da fábrica. Através desses eletrodos são injetadas correntes elétricas continuas que, além da eletrólise em si, provocam o aquecimento do banho eletrolítico, elevando a sua temperatura para uma faixa acima de 960 °C. A motivação para o trabalho está na alta complexibilidade do processo de redução do alumínio primário, cuja natureza é não-linear e o mesmo sofre influência de diversas variáveis diretamente ligadas a dinâmica do processo, muitas vezes imperceptíveis aos engenheiros de processo da fábrica, mas que podem ser percebidas por meio das técnicas de inteligência computacional refletindo aproximadamente as diferentes condições operacionais do sistema real.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA