Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Energy manufacturing"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    DissertaçãoAcesso aberto (Open Access)
    Arquitetura de modelos híbridos, machine learning e otimizadores para análise de consumo de energia elétrica e produtividade em pintura automotiva
    (Universidade Federal do Pará, 2024-03-27) OLIVEIRA, Rafael Barbosa de; OLIVEIRA, Roberto Célio Limão de; http://lattes.cnpq.br/4497607460894318
    Estratégias de otimização de consumo energético nas etapas de pintura emergem como fatores primordiais para promover uma produção mais sustentável e competitiva no setor automotivo. Esta dissertação busca prever o consumo energético e maximizar a produtividade na pintura automotiva, utilizando uma abordagem que combina seleção de variáveis, modelos híbridos, hiperparâmetros destes modelos e otimização por meta-heurística em uma arquitetura com 3 etapas. Os processos de pintura automotiva apresentam variáveis em forma de séries temporais que descrevem o histórico do consumo de energia. Na etapa 1, escolhe-se o melhor modelo de aprendizado de máquina (Random Forest, Long-Short Term Memory, XGBoost e GRU-LSTM) para prever séries temporais do consumo energético em t+1. Na etapa 2, avalia-se os modelos RF, XGBoost e Rede Neural Artificial (RNA) Densa para selecionar o melhor preditor de quantidade de veículos produzidos (ciclos). Na etapa 3, seleciona-se a melhor meta-heurística entre Genetic Algorithm (GA), Differential Evolution (DE) e Particle Swarm Optimization (PSO) para otimizar o consumo energético previsto pelo melhor modelo do step 1, usando como medida de fitness o melhor modelo do step 2. A arquitetura final reduziu a energia consumida em até 16% e aumentou o ciclo em 127%, usando os modelos GRU-LSTM na etapa 1, RNA Densa na etapa 2 e DE no etapa 3. Os resultados ressaltam a oportunidade de uso da abordagem proposta para otimizar o consumo de enrgia e a produtividade na pintura automotiva.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA