Navegando por Assunto "Environmental conditions"
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Dissertação Acesso aberto (Open Access) Machine learning algorithms for damage detection in structures under changing normal conditions(Universidade Federal do Pará, 2017-01-31) SILVA, Moisés Felipe Mello da; SALES JÚNIOR, Claudomiro de Souza de; http://lattes.cnpq.br/4742268936279649; COSTA, João Crisóstomo Weyl Albuquerque; http://lattes.cnpq.br/9622051867672434Engineering structures have played an important role into societies across the years. A suitable management of such structures requires automated structural health monitoring (SHM) approaches to derive the actual condition of the system. Unfortunately, normal variations in structure dynamics, caused by operational and environmental conditions, can mask the existence of damage. In SHM, data normalization is referred as the process of filtering normal effects to provide a proper evaluation of structural health condition. In this context, the approaches based on principal component analysis and clustering have been successfully employed to model the normal condition, even when severe effects of varying factors impose difficulties to the damage detection. However, these traditional approaches imposes serious limitations to deployment in real-world monitoring campaigns, mainly due to the constraints related to data distribution and model parameters, as well as data normalization problems. This work aims to apply deep neural networks and propose a novel agglomerative cluster-based approach for data normalization and damage detection in an effort to overcome the limitations imposed by traditional methods. Regarding deep networks, the employment of new training algorithms provide models with high generalization capabilities, able to learn, at same time, linear and nonlinear influences. On the other hand, the novel cluster-based approach does not require any input parameter, as well as none data distribution assumptions are made, allowing its enforcement on a wide range of applications. The superiority of the proposed approaches over state-of-the-art ones is attested on standard data sets from monitoring systems installed on two bridges: the Z-24 Bridge and the Tamar Bridge. Both techniques revealed to have better data normalization and classification performance than the alternative ones in terms of false-positive and false-negative indications of damage, suggesting their applicability for real-world structural health monitoring scenarios.Tese Acesso aberto (Open Access) Output-only methods for damage identification in structural health monitoring(Universidade Federal do Pará, 2017-04-27) SANTOS, Adam Dreyton Ferreira dos; FIGUEIREDO, Elói João Faria; http://lattes.cnpq.br/2315380423001185; COSTA, João Crisóstomo Weyl Albuquerque; http://lattes.cnpq.br/9622051867672434In the structural health monitoring (SHM) field, vibration-based damage identification has become a crucial research area due to its potential to be applied in real-world engineering structures. Assuming that the vibration signals can be measured by employing different types of monitoring systems, when one applies appropriate data treatment, damage-sensitive features can be extracted and used to assess early and progressive structural damage. However, real-world structures are subjected to regular changes in operational and environmental conditions (e.g., temperature, relative humidity, traffic loading and so on) which impose difficulties to identify structural damage as these changes influence different features in a distinguish manner. In this thesis by papers, to overcome this drawback, novel output-only methods are proposed for detecting and quantifying damage on structures under unmeasured operational and environmental influences. The methods are based on the machine learning and artificial intelligence fields and can be classified as kernel- and cluster-based techniques. When the novel methods are compared to the state-of-the-art ones, the results demonstrated that the former ones have better damage detection performance in terms of false-positive (ranging between 3.65.4%) and false-negative (ranging between 0-2.6%) indications of damage, suggesting their applicability for real-world SHM solutions. If the proposed methods are compared to each other, the cluster-based ones, namely the global expectation-maximization approaches based on memetic algorithms, proved to be the best techniques to learn the normal structural condition, without loss of information or sensitivity to the initial parameters, and to detect damage (total errors equal to 4.4%).
