Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Estimador fuzzy"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Estudos de estratégias de identificação paramétrica para detecção e diagnóstico de faltas em um processo industrial do tipo tanques comunicantes
    (Universidade Federal do Pará, 2012-04-22) SILVA, Raphael Diego Comesanha e; BARRA JUNIOR, Walter; http://lattes.cnpq.br/0492699174212608; COSTA JÚNIOR, Carlos Tavares da; http://lattes.cnpq.br/6328549183075122
    This dissertation presents a technique for detection and diagnosis of incipient faults, which cause changes in behavior of the system under investigation and are reflected in the mathematical model’s parameters values variation. As a testbed, was constructed a model of an industrial system computing environment Matlab/Simulink, which consists of a dynamic plant composed of two tanks linked to each other. The modeling of this plant was carried out by physical equations that describe the dynamics of the system. The fault, which the system was submitted, represents a gradual clogging in the exit pipe of the tank 2. This bottleneck causes a gradual reduction, up to 20%, of the pipe section. The technique of fault detection was performed by real-time estimation of parameters Auto-regressive models with exogenous inputs (ARX) with fuzzy and Recursive Least Squares (RLS) estimators. Already, the percentage clogging diagnosis of the pipe was obtained by a fuzzy system parameter tracking, fed back by the integral of the residue detection. Using this methodology, it was possible to detect and diagnose the simulated fault in three differents operating points of the system. In both techniques tested, the RLS method perform well, only to detect fault. Otherwise, the fuzzy method performed better, in detect and diagnose the fault applied to the system, noting the work propose.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA