Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Faraday effect"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 2 de 2
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Caracterização e desenvolvimento de sensores ópticos de corrente elétrica para aplicações em linhas de alta tensão
    (Universidade Federal do Pará, 2017-04-03) SANTA BRÍGIDA, Angela Costa; COSTA, João Crisóstomo Weyl Albuquerque; http://lattes.cnpq.br/9622051867672434
    This thesis, titled "Characterization and development of electric sensors for electrical applications in high voltage lines" was developed in a PhD program in Electrical Engineering. Fix the devices and characterized the magneto-optical current sensors for measurement applications and protection in high power systems, namely, prism sensor and photonic glass fiber (PCF) sensor. Both are based on the Faraday effect, using a double quadrature polarimetric configuration. This work was then divided in two moments. In the first, a prism sensor, consisting of a portable sensor head for anchoring in the transmission line was developed, in Portugal, for an industrial application. In this case, no prism sensor prototype was used in a Schott SF57 glass prism 8cm in length with high Verdet constant and low birefringence. It has been incorporated into a Nylon casing suitable for fastening applications in the power line. The operation of the sensor is characterized and compared using Super Luminescent Diodes (SLD) as a source of 650, 830 and 1550 nm. Class 1 precision sensor for nominal currents of 900 ARMS or higher and classes 0,1 and 0,2 for nominal currents of 1,2 kARMS and 0,3 kARMS, respectively, and the possibility of detecting impulses in the network of 10 Μs. Second, another type of wrapping, the use of optical fibers as a transition element, using highly rotated fibers at 4, 6, 9, and 11 revolutions per second, developed by the group of the Laboratory of Special Fibers and Photonic Materials - LaFE, from the Institute of Physics Gleb Wataghin of UNICAMP, Brazil. In particular, these lines were tested as a whole on an electric conductor using three winding sizes of 6, 12 and 18 cm in diameters with different turns, with currents of up to 800 ARMS using an SLD source at 650 nm. Parameters, such as sensitivity and linearity of the sensor, were investigated. A symbolic analysis was also performed to quantitatively analyze the fiber sensitivity value with respect to the number of turns and with respect to the diameter of the support, there is no conclusion that there is a compromise between these two parameters in order to obtain a better response in the signal of sensor output.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Efeitos de Faraday e Kerr em estruturas periódicas metálicas: Grafeno na faixa de THz e Ouro-Dielétrico-Bi:YIG na faixa do infravermelho
    (Universidade Federal do Pará, 2018-10-05) SANTOS, Carlos Rafael Marques dos; DMITRIEV, Victor Alexandrovich; http://lattes.cnpq.br/3139536479960191
    Photonics is a research field whose purpose lies in the use of light (photons), rather than electrons (electronics) in the realization of certain functions such as storage, transfer and processing of signals. In this context, it opens the possibility of development and production of devices whose storage capacity surpasses those of electronic devices. To do this, it is necessary to control the photons similarly, to what is done in electronics with the electrons. The control of radiation, in the context of photonics, can be realized through magneto-optical effects, such as the Faraday and Kerr effects. The Faraday effect is used as the basis of operation of devices such as optical isolators, current sensors and others. In turn, the Kerr effect is the basis of the operation of data storage devices (optical magnetic memory). In the present work, magneto-optical effects of Faraday and Kerr, as well as the transmission of electromagnetic radiation are studied in the regions of terahertz and infrared. In the frequency range that corresponds to the THz, the Faraday effect, the Kerr effect and the radiation transmittance are analyzed in periodic structures of graphene with different geometries. The structures analyzed in this work can present RF, for weak magnetic fields (B =1 T, for example), greater than 3_ depending on the choice of geometry that can be circles, squares, squares with small cuts in the corners and ribbons. Faraday rotation in these systems can be explained by a simple circuit model where the introduction of periodicity in the graphene promotes the increase of the system impedance and consequently changes the magneto-optical properties of the system, improving the rotation of Faraday at high frequencies (larger than 8 THz) still with magnetic field values taken as weak. This characteristic can not be obtained in a uniform sheet of graphene, since it is possible to obtain a strong rotation of Faraday at high frequencies with strong magnetic fields (10 T, for example). Additionally, for the three periodic structures it was calculated the Kerr rotation that can reach the value 3.96_ depending on the geometry chosen. For all cases, the maximum frequency of Faraday and Kerr rotations occur for frequencies greater than 7 THz. These results are better than results already published. In the infrared region are studies the effects of Faraday, Kerr, as well as extraordinary optical transmission in a plasmonic hybrid structure composed of four layers. For this, the Faraday rotation is of 7_ and 0.25 of of transmittance For wavelength 945 nm. Additionally, the Kerr effect can reach 23_. These results are better than results already published. In the proposed structure, the improvement of Faraday’s rotation is due to the increase of the Q factor of the resonances in the magneto-optical material layer.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA