Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Fault classification"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    TeseAcesso aberto (Open Access)
    Análise de desempenho de algoritmos para classificação de sequências representando faltas do tipo curto-circuito em linhas de transmissão de energia elétrica
    (Universidade Federal do Pará, 2019-12-05) FREIRE, Jean Carlos Arouche; MORAIS, Jefferson Magalhães de; http://lattes.cnpq.br/5219735119295290; CASTRO, Adriana Rosa Garcez; http://lattes.cnpq.br/5273686389382860
    A manutenção da qualidade de energia em sistemas elétricos de potência depende do tratamento dos principais distúrbios que possam surgir em sua geração, transmissão e distribuição. Dentro deste contexto, muitos estudos vêm sendo desenvolvidos com o objetivo de realizar a detecção e classificação de faltas do tipo curto-circuito em sistemas elétricos através da análise do comportamento do sinal elétrico. Os sistemas de classificação de faltas em linha de transmissão podem ser divididos em dois tipos: sistemas de classificação on-line e pós-falta. No cenário pósfalta as sequências do sinal a serem avaliadas para a classificação possuem comprimento (duração) variável. Na classificação de sequências é possível utilizar classificadores convencionais tais como Redes Neurais Artificiais, Máquinas de Vetores de Suporte, K-vizinhos mais próximos e Árvore de Decisão (Floresta aleatória). Nestes casos, o processo de classificação geralmente requer um pré-processamento das sequências ou um estágio de front end que converta os dados bruto em parâmetros sensíveis para alimentar o classificador, o que pode aumentar o custo computacional do sistema de classificação. Uma alternativa para este problema é a arquitetura de classificação de sequências baseada em quadros (FBSC - Frame Based Sequence Classification). O problema da arquitetura FBSC é que esta possui muitos graus de liberdade na concepção do modelo (front end mais classificador) devendo este ser avaliado usando um conjunto de dados completo e uma metodologia rigorosa para evitar conclusões tendenciosas. Considerando a importância do uso de metodologias para classificação de faltas do tipo curto-circuito eficientes e principalmente com baixo custo computacional, este trabalho apresenta os resultados do estudo desenvolvido de análise do algoritmo KNN (K-vizinhos mais próximo) associado a medida de similaridade de Alinhamento Temporal Dinâmico (DTW) e do algoritmo HMM (Modelo Oculto de Markov) para a tarefa de classificação de faltas. Estas duas técnicas permitem o uso direto dos dados sem a necessidade de utilização de front ends, além de possuírem a capacidade de poder tratar séries temporais multivariadas e de tamanho variável, que é o caso das sequências de sinais para o caso pós-falta. Para desenvolvimento dos dois sistemas propostos para classificação foram utilizados dados simulados de faltas do tipo curto-circuito oriundos da base de dados pública UFPAFaults. Para comparação de resultados com metodologias já apresentadas na literatura para o problema, foi também avaliada, para o mesmo banco de dados, a arquitetura FBSC. No caso da arquitetura FBSC, diferentes front ends e classificadores foram utilizados. A avaliação comparativa foi realizada a partir da medida de taxa de erro, custo computacional e testes estatísticos. Os resultados obtidos mostraram que o classificador baseado no HMM se mostrou mais adequado para o problema de classificação de faltas do tipo curto-circuito em linhas de transmissão.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA