Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Feixes Gaussianos"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 4 de 4
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Análise do efeito da discretização do modelo de velocidades nas migrações Kirchhoff e Kirchhoff-Gaussian- Beam 2D pré-empilhamento em profundidade
    (Universidade Federal do Pará, 2014-02-28) PAIXÃO, Marcelo Tavares; CRUZ, João Carlos Ribeiro; http://lattes.cnpq.br/8498743497664023
    The Gaussian Beam (GB) is an asymptotic solution of the elastodynamic equation in the paraxial vicinity of a central ray, which approaches better the wave field than the standard zero-order ray theory. The GB regularity in the description of the wave field, as well as its high accuracy in some singular regions of the propagation medium, provide a strong alternative to solve seismic modeling and imaging problems. In this dissertation , I present a new procedure for pre-stack depth migration with true-amplitude, combining the flexibility and robustness of Kirchhoff migration type using superposition of Gaussian beams to represent the wave field. The proposed migration algorithm comprises in two stacking process: the first is the beam stack applied to subsets of seismic data multiplied by a weight function defined such that stack operator has the same formulation of the integral of the Gaussian beams superposition; the second is a weighted diffraction stack by means of the Kirchhoff type integral having as input the stacked data. For these reasons it is called Kirchhoff-Gaussian-Beam (KGB) migration. In order to compare the Kirchhoff and KGB methods with respect to the sensibility on relation to the discretization length, we apply them to the well-know 2D Marmousi dataset using four velocity grids, i.e. 60 m, 80 m, 100 m e 150 m. As result we have that both methods present a much better image for smaller discretization interval of the velocity grid. The amplitude spectrum of the migrated sections provide us with the spatial frequency contents of the obtained image sections.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Migração 3-D Kirchhoff-Gaussian-Beam (KGB) pré-empilhamento no domínio da profundidade
    (Universidade Federal do Pará, 2013-06-24) PEREIRA, Glauco Lira; CRUZ, João Carlos Ribeiro; http://lattes.cnpq.br/8498743497664023
    The Gaussian Beam (GB) is an asymptotic solution of the elastodynamic equation in the paraxial vicinity of a central ray, which approaches better the wave field than the standard zero-order ray theory. The GB regularity in the description of the wave field, as well as its high accuracy in some singular regions of the propagation medium, provide a strong alternative to solve seismic modeling and imaging problems. In this thesis, i presenty a new procedure for pre-stack depth migration with true-amplitude, combining the flexibility and robustness of Kirchhoff migration type using superposition of Gaussian beams to represent the wave field. The proposed migration algorithm comprises in two stacking process: the first is the beam stack is applied to subsets of seismic data multiplied by a weight function defined such that stack operator has the same formulation of the integral of the Gaussian beams superposition; the second is a weighted diffraction stack by means of the Kirchhoff type integral having as input the GB stacked data. For these reasons it is called Kirchhoff-Gaussian-Beam (KGB) migration. The main characteristics that distinguish the KGB migration, during the first stage stacking, with other migration methods that also use the theory of Gaussian beams, is the use of the first Fresnel zone projected to limit the width of the subset of seismic traces (beam) using a second-order approximation of the reflection travel time. Examples are shown for applications on two-dimensional (2-D) and three-dimensional (3-D) synthetic seismic data, respectively, to the models Marmousi and SEG/EAGE salt dome data sets.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Migração Kirchhoff pré-empilhamento em profundidade modificada usando o operador de feixes gaussianos
    (Universidade Federal do Pará, 2007) FERREIRA, Carlos Augusto Sarmento; CRUZ, João Carlos Ribeiro; http://lattes.cnpq.br/8498743497664023
    The Gaussian Beam (GB) concept was introduced in the seismic literature by Russian and Czech researchers in the begining of the 80’s. This theory, which by its turn was based on the scalar electromagnetic diffraction theory, is in fact a (zero order) complex paraxial ray theory, designed to satisfactorilly describe the seismic wavefield propagation beyond the standard zero order ray theory, up to then the only theory used to describe the high frequency seismic wavefield propagation in smoothed velocity models. As an imaging tool, the first works to deal with GB’s were published in the end of the 80’s and in the begining of the 90’s. The regularity in the description of the wavefield by GB’ s, as well as its high accuracy in some singular regions of the velocity model, transformed the use of GB’s into a viable hybrid alternative in the migration theory. In this work, we unite the flexibility in imaging of the true amplitude prestack Kirchhoff depth migration with the regularity in the description of the wavefield by a superposition of GB’s. As a way of controlling in a very stable way some quantities used in the construction of the beams, we have made use of some informations based on the Fresnel volume elements, more especifically speaking the Fresnel zone radius around the reflection point in depth and its counterpart, projected towards the acquisition surface. This information is centred around the recording point of the seismogram and is also present in the seismic data reflection traveltime curves. Our migration process can be named a true amplitude prestack Kirchhoff depth migration using GB’s as Green function, namely KGB-PSDM.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Migração pré-empilhamento Kirchhoff feixes gaussianos 2,5D nos domínios afastamento comum e ângulo-comum
    (Universidade Federal do Pará, 2012) COSTA, Manuel de Jesus dos Santos; CRUZ, João Carlos Ribeiro; http://lattes.cnpq.br/8498743497664023; CALLAPINO, German Garabito; http://lattes.cnpq.br/6064981270181319
    A Kirchhoff-type migration is considered in the geophysics literature as one of the most fundamental tools in seismic data processing, the base for solution of several imaging problems. In this respect, it must be considered its wide use and its successful history for the oil and gas industry, associated with its low computational cost and flexibility to deal with non-wavefield datasets when compared to other methods. However in 3D, even when compared to other existing and most effective methods, its computational cost and implementation is still considered high, due to several reasons: new acquisition technologies, data storage and burden, azimuth richness, etc. Thus the main objective of the present work is to implement and simulate migration results (i.e., images) with high signal-to-noise ratios and with a less computer burdens in 2.5D media, using the theoretical framework of Gaussian Beams (GBs). By considering one implementation of a superposition of GBs integral operator studied by Ferreira and Cruz (2009) and by the use of the stationary phase method (Bleistein, 2000), a new integral superposition migration operator using paraxial fields (i.e., GBs) was implemented and studied. Theoretically speaking, the present migration operator was inserted in the kernel of a conventional, 2.5D, true-amplitude, prestack Kirchhoff migration integral operator, thus defining a 2.5D prestack Kirchhoff-Gaussian Beam (KGB) migration operator. The present migration operator was later configured to hold commonoffset (CO) and common-angle (CA) seismic acquisition configurations. I remark that in the present thesis one flexibility of the GB migration operator was idealized in order to handle its effective application in more the one sorting configuration, i.e., common-offset and commonsource.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA