Navegando por Assunto "Fibra de açaí"
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Perfis de polietileno reciclado carregado com fibra de açaí(Universidade Federal do Pará, 2012-05-19) BRITO, Paulo Roberto de Oliveira; DIAS, Carmen Gilda Barroso Tavares; http://lattes.cnpq.br/2113791118142177Were obtained porous tubular profiles, polyethylene (PE) and polyethylene/fiber açai (PE/PA) 80/20 extruded from granulated particles of high-density polyethylene packaging recycled post-consumer 600 μm, and this with fiber açaí 300 μm. For parts processing was developed a mono-screw extruder bench, with System Mechanic powered by an electric motor of ½ HP (0.37 kw) controlled by a frequency inverter with cannons, bagels, array and replaceable heating system. To allow a preview of didactic equipment operating conditions so simplified were conducted tests with paraffin in glass ranging from Cannon-if the screw rotation speeds and temperature profile, adjusting mass flow and pressure in the output. For extrusion of profiles theological tests were conducted with porous of PE and PE/FA screw, barrel being selected and aluminum matrix; bagel with step 9 mm and length diameter ratio (L/D) 22, composed of an element mixer and a floating element in the zone of flow control; angle between the axis and thread screw 17 air gap between the screw and barrel 0.15 mm; 1.3 rpm rotation; heating along the cannon 120º C; tubular array with 21 mm internal diameter and Chuck 19 mm outside diameter. PE profiles and PE/FA showed average pore diameter 0.7 and 0.6 mm; specific gravity to water at a point 28º C 0.77 and 0.73; modulus GPa 1.002 and 2.601 and maximum apparent swelling of extruded 100 and 80%.Item Acesso aberto (Open Access) Production and evaluation of recycled polymers from açaí fibers(2010-06) CASTRO, Clívia Danúbia Pinho da Costa; DIAS, Carmen Gilda Barroso Tavares; FARIA, José de Assis FonsecaThe possibility of recycling and the favorable mechanical properties of the products have encouraged the study and production of thermoplastic composites from natural fibrous waste. Açaí (cabbage palm) fiber, which is removed from the seed, has been slightly investigated, as compared to what is already known about the fruit pulp. In this study, the influence of açaí fiber as an element of reinforcement in recycled everyday usage thermoplastics using simple, low cost methodology was evaluated. Recycled matrixes of high impact polystyrene and polypropylene were molded by hot compression from which the fiber composites were obtained. The FTIR technique showed that the process was efficient in preventing degradation of the açaí fibers. The influence of the fiber on the mechanical behavior of the recycled matrixes was investigated by microscopic images of compression and impact tests. The results showed better impact performance for the fiber combined with the polymeric matrixes.