Navegando por Assunto "Forecast"
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Dissertação Acesso aberto (Open Access) Metodologia de monitoramento de epidemias: uma abordagem baseada em redes neurais artificiais(Universidade Federal do Pará, 2018-01-26) SILVA, Wilson Rogério Soares e; FRANCÊS, Carlos Renato Lisboa; http://lattes.cnpq.br/7458287841862567A dengue é uma doença infecciosa viral presente em mais de 100 países no mundo. Nos países subdesenvolvidos como o Brasil essa patologia apresenta contornos dramáticos quando se acrescentam fatores socioeconômicos preponderantes como as condições precárias de saneamento básico características das grandes cidades. Ao associarmos esse cenário à Amazônia percebemos que a localização geográfica e as condições climáticas desse espaço contribuem para que a ocorrência dessa doença seja dimensionada. O Ministério da Saúde, disponibilizou dados resultantes de uma pesquisa que constata que dos 409.073 casos notificados na região Norte, 106.433 ocorreram no estado do Pará, em que os municípios com maiores notificações de casos de dengue são: Belém, Parauapebas, Altamira e Santarém. Este trabalho propõe uma metodologia para monitorar epidemias com base na utilização de Redes Neurais Artificiais, a partir de um estudo de caso de predição de casos de dengue no estado do Pará. Para isso, desenvolveu-se um sistema que usa base de dados públicos de casos da doença, de ocorrência semanal dos municípios já mencionados. Em adição, realiza a análise estatística das séries dos municípios constando complexidade, e justificando o uso de redes neurais para esse tipo de problema. Realiza os ajustes das camadas, janela de tempo do modelo neural treinado que nesse caso é uma variação conhecida como rede neural recorrente. E implementa um módulo de emissão de alertas, visando à detecção de um aumento repentino de novos casos da doença, contribuindo para tomada de decisão dos órgãos de saúde pública e suas respectivas ações de controle das epidemias nos municípios em estudo. A partir de nossas análises podemos concluir que a metodologia descrita na pesquisa tem validade para realizar previsões de casos de dengue, usando redes neurais, antecipando ações de combate e contribuindo para a tomada de decisão, que poderá ser usado por gestores públicos da área da saúde. E que o uso de redes neurais recorrentes consegue se ajusta a complexidade das séries estudadas. Os resultados demonstraram que o modelo de RNA, para o cenário em voga, obteve um bom desempenho na predição epidemiológica, alcançando acurácia satisfatória.Tese Acesso aberto (Open Access) Previsão de séries temporais no sistema elétrico brasileiro utilizando preditores baseados em aprendizado de máquina: uma análise empírica(Universidade Federal do Pará, 2024-04-05) CONTE, Thiago Nicolau Magalhães de Souza; OLIVEIRA, Roberto Célio Limão de; http://lattes.cnpq.br/4497607460894318; https://orcid.org/0000-0002-6640-3182O panorama da energia elétrica no Brasil é influenciado por uma variedade de fatores complexos e relações não lineares, o que torna a previsão desafiadora. Com o aumento da demanda por energia e a crescente preocupação ambiental, é crucial buscar soluções baseadas em práticas de energia limpa e renovável, visando tornar o mercado de energia mais sustentável. Essas práticas visam reduzir o desperdício e otimizar a eficiência dos processos envolvidos na operação das tecnologias de distribuição e geração de energia elétrica. Uma abordagem promissora para viabilizar a energia sustentável é a aplicação de técnicas de previsão para diversas variáveis do mercado energético. Esta pesquisa propõe uma análise empírica do uso de regressores para realizar previsões nas bases de dados do Preço de Liquidação das Diferenças (PLD) do mercado brasileiro e da velocidade do vento em aerogeradores do Nordeste do Brasil. Busca-se contribuir com informações significativas sobre as técnicas de aprendizagem de máquina, que podem ser empregadas como ferramentas eficazes para a previsão de séries temporais no setor elétrico. Os resultados obtidos podem incentivar a implantação dessas técnicas para extrair conhecimento sobre o comportamento do sistema de energia brasileiro. Isso é particularmente relevante, dado que o preço da energia frequentemente exibe sazonalidade, alta volatilidade e picos, e a geração de energia eólica é amplamente influenciada pelas condições climáticas. Para modelar a previsão dessas duas séries temporais, utilizamos o banco de dados sobre o PLD, focando especialmente no preço médio da energia do Sistema Nacional Brasileiro. As variáveis mais relevantes estão relacionadas às condições hidrológicas, carga elétrica e preço dos combustíveis das unidades térmicas. Para a coleta das variáveis relacionadas à energia eólica, foram considerados dois locais distintos na região nordeste do Brasil: Macau e Petrolina. Para o estudo de previsão, utilizamos uma Rede Neural Perceptron Multicamadas (MLP), uma Long Short Term Memory (LSTM), o Auto-Regressive Integrado de Média Móveis (ARIMA) e a Máquina de Suporte de Vetores (SVM) para determinar as linhas bases nos resultados da predição. Para aprimorar os resultados destes regressores, utilizamos duas abordagens distintas de previsão. Uma das abordagens consistiu na combinação das técnicas de Redes Neurais Artificiais Profundas, baseada na Meta-Heurística do Algoritmo Genético Canônico (AG), para ajustar os hiperparâmetros dos regressores MLP e LSTM. Já a segunda estratégia focou em comitês de máquinas, os quais incluíam MLP, Árvore de Decisão, Regressão Linear e SVM em um comitê, e MLP, LSTM, SVM e ARIMA em outro. Essas abordagens consideraram dois tipos de votação, voting average (VO) e voting weighted average (VOWA), para avaliar o impacto no desempenho do comitê de máquinas.
