Navegando por Assunto "Geologia - Pará"
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Dissertação Acesso aberto (Open Access) Geologia, petrografia e geoquímica da associação tonalitotrondhjemito-granodiorito (TTG) do extremo leste do subdomínio de transição, Província Carajás(Universidade Federal do Pará, 2013-07-31) SANTOS, Patrick Araujo dos; DALL'AGNOL, Roberto; http://lattes.cnpq.br/2158196443144675The eastern border of the Transition Subdomain of the Carajás Province is constituteddominantly of Archean tonalite-trondhjemite-granodiorite (TTG). Deformed monzogranites, similar to the Planalto granite suite, and metagabbros inserted in association mafic-enderbitic also occur. Paleoproterozoic isotropic granites and mafic dykes devoid of significant deformation crosscut the Archean lithologies. The TTGs are exposed as blocks or as flat outcrops in areas of low relief and commonly include quartz-diorite enclaves. The TTG rocks display gray colour and are generally medium-grained, showing compositional banding or, sometimes, homogeneous aspect. They show commonly a NW-SW to E-W trending foliation with vertical to subvertical dips and were submitted to NE-SW stress. Locally, it was identified a NE-SW foliation transposed to E-W along shear zones. In some instances, they exhibit mylonitic to protomilonitics features, registered in the oval form of plagioclase porphyroclasts or boudinated leucogranitics veins. Two petrographic varieties are recognized for this association: biotite-trondjhemite and subordinate biotite-granodiorites, both have similar mineralogical and textural aspects and are characterized by a poorly preserved igneous texture, partially overwritten by an intense recrystallization. EDS analyses revealed that the plagioclase is a calcic oligoclase (An27-19), with Or ranging from 0.6 - 2.3%. The biotites are ferromagnesian, with dominance of Fe over Mg (Fe / [Fe + Mg] ranging from 0.54 to 0.59) and the analyzed epidote presents pistacite contents ranging from 23 to 27.6 % and plot mostly in the range of magmatic epidotes. The trondhjemite shows all typical characteristics of Archean TTG suites. They have high La/Yb and Sr/Y ratios, suggesting they were derived from the partial melting of garnet amphibolite sources at high pressures (ca. 1.5 GPa) or, at least, that their magmatic evolution was controlled by the fractionation of garnet and possibly amphibole, without significant influence of plagioclase. The studied TTGs show similarities with Mariazinha tonalite and Mogno trondjemite, of the Rio Maria Domain, Colorado trondhjemite and, in at a lesser degree, to the Rio Verde trondhjemite, of the Carajás Domain. The granodiorites display a calc-alkaline signature and shows LILE enrichment, specifically K²O, Rb and Ba, when compared to the trondhjemites, but still preserving some geochemical features of the TTG. The geochemical data indicate that the trondhjemite and granodiorite are not related by fractional crystallization. An origin of the granodiorite by partial melting of the TTG rocks is also discarded. The granodiorite could, however, result of contamination of TTG magmas by lithosphere metasomatism or assimilation of sediments from subducted oceanic crust along trondhjemite liquid genesis. In the eastern portion of the mapped area, it was identified a small, E-W trending granite stock clearly controlled by shear zones. The rocks have mylonitic textures, characterized by ovoid-shaped feldspar porphyroclasts, wrapped by recrystallized quartz and mica. These granitic rocks have geochemical signatures of reduced A-type granites and are similar to the Planalto granite suite. Boulders of mafic rocks crop out locally in the northern portion of the area. These rocks show a dominant granoblastic texture, and are mainly composed of amphibole and plagioclase, with subordinate biotite and quartz. In the northern part of the mapped area, it was identified a body of isotropic granite without significant deformation and showing locally rapakivi textures. This granitic pluton was correlated to the Paleoproterozoic A-type granites, represented in the Carajás Domain by the Serra dos Carajás suite and Rio Branco Granite. These granites were not studied in detail. The geological and geochemical aspects shown by the Archean granitoids identified in the eastern part of the Transition Subdomain implies in the existence of significant TTG rocks in the Transition Subdomain. This reinforces the hypothesis that the Transition Subdomain could represent an extension of the Rio Maria Domain, but affected by crustal reworking events in the Neoarchean.Dissertação Acesso aberto (Open Access) Geologia, petrografia e geoquímica dos granitóides arqueanos de Sapucaia - Província Carajás-PA(Universidade Federal do Pará, 2013) TEIXEIRA, Mayara Fraeda Barbosa; DALL'AGNOL, Roberto; http://lattes.cnpq.br/2158196443144675Geological mapping performed in the eastern portion of the Transition Subdomain, Carajás Province, southern of Canaã dos Carajás and the northern of Sapucaia cities, allowed the identification, individualization and characterization of a variety of Archean rocks, previously encompassed in the Xingu Complex. The oldest unit identified in this area is a hornblende tonalite, correlated to São Carlos Tonalite (~2.93 Ga), which is exposed as blocks or outcrop and commonly present foliation (NW-SE to E-W) or homogeneous aspect. Its geochemical signatures differ from the typical Archean tonalite-trondhjemite-granodiorite (TTG) associations due to show enrichment in TiO2, MgO and CaO, low contents of Sr, and Rb contents similar to samples with lower concentrations of silica, which are reflected in higher Rb/Sr ratios and lower Sr/Ba ratios. The REE patterns reveal low to moderate fractionation of HREE compared to LREE, and discrete or moderate negative Eu anomalies. It is stratigraphycally followed by TTG association correlated to Colorado Trondhjemite (~2.87 Ga) which displays gray color, medium-grained, and commonly a NW-SE to E-W foliation. In the southern of area, outcrops a body of 40 km 2, which comprises a small mountain of porphyritic leucogranodioritic rocks named Pantanal Leucogranodiorite . It is emplaced at TTG association and crosscutted, on its western portion, by deformed leucogranites. The Pantanal Leucogranodiorite shows peraluminous character and calc-alkaline affinity, with high contents of Ba and Sr. The REE patterns show nosignificant Eu anomalies and HREE are strongly fractionated, which is geochemically similar to Guarantã Suite (~2.87 Ga) from the Rio Maria Domain. Its origin may be related to low degrees of melting of TTG, probably accompanied by interaction with fluids enriched in K, Ba and Sr, derived from a metasomatized mantle. The leucogranites exhibit A-type geochemical signature and reduced character, and may have originated from the melt of dehydrated peraluminous calcic-alkaline rocks, during the Neoarchean. In the eastern portion of the Pantanal Leucogranodiorite was also identified ahornblende-biotite monzogranite which is geochemically similar to oxidized A-type granites, correlated to Neoarchean Vila Jussara Suite. Also, it correlated to Neoarchean subalkaline magmatism in the northern area, occur two granitic stocks. They comprise (i) tonalite to granodiorite with geochemical signature similar to oxidized A-type granites and show affinity with Vila Jussara Suite; and (ii) monzogranites which show reduced A-type granites signature and could be compared to Planalto Suite. At northern of the study area was identified an association of mafic-enderbitic rocks which comprises intensely deformed and recrystallized hornblende norite, pyroxene-hornblende gabbros, pyroxeneix hornblende monzonite, hornblende gabbros, amphibolites and enderbites, which are represented in the geological map as a WNW-ESE small elongated body , and a semicircular body controlled by shear zones. The textures observed in these rocks indicate that recrystallization occurs under relatively high temperatures, 6000C or above, and those rocks show metamorphic features. The geochemical behavior of these rocks suggests that the hornblende-norite, hornblende-gabbros and amphibolites are tholeiitic subalkalines, whereas enderbites, pyroxene-hornblende gabbro and pyroxene-hornblende monzonite exhibit calcalkaline signature. The low La/Yb ratios for mafic rocks indicate low degree of fractionation, whereas the high La/Yb ratios for enderbites reveal significant fractionation of HREE during formation and differentiation of its magmas, and the concavity of HREE pattern indicates probably influence of amphibole fractionation during its evolution. In the central and northcentral of area was recognized biotite-monzogranites with peraluminous and calc-alkaline signature and distinct REE patterns, which allowed us to distinguish two groups. The first shows higher REE enrichment, weak enrichment in LREE relative to HREE, and exhibit moderate negative Eu anomalies, indicating no significant fractionation of phases enriched in HREE and show possibly affinity with Bom Jesus Granite from Canaã dos Carajás area. The second group shows a sharp fractionation of HREE relative to LREE, with discrete or absent Eu anomalies, and concave HREE patterns indicating that amphibole was important phase during the fractionation of these rocks, like Serra Dourada and Cruzadão granites, also located in the Canaã dos Carajás area. This comparison should be enhanced as soon as further geochemical and geochronological data are available in order to a correlation can be evaluated.
