Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Gliose"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 2 de 2
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Análise comparativa dos padrões neurodegenerativos da substância cinzenta em diferentes áreas corticais de ratos adultos submetidos à lesão isquêmica focal
    (Universidade Federal do Pará, 2012-09-27) SANTOS, Enio Maurício Nery dos; LEAL, Walace Gomes; http://lattes.cnpq.br/2085871005197072
    Stroke can occur in any region of the central nervous system (CNS). The cerebral cortex is one of the most often affected areaby this acute neural disorder, but there are no studies that have compared the damaging pattern in different cortical regions after acomparable focal ischemia. The aim of this investigation was to evaluate the degenerative pattern of different cortical areas after focal ischemic injury. Focal ischemia was induced by stereotaxic microinjections of endothelin-1 (ET-1) into the somatosensory, motor and association cortices of adult rats (N = 45). The control animals were injected with the same volume of sterile saline (N = 27). The animals were perfused 1, 3 and 7 days after the ischemic event. The brain was removed, postfixed, cryoprotected, and sectioned in a cryostat. The general histopathology was evaluated in 50μm sections stained with cresyl violet. 20μm sections were submitted to immunohistochemistry for astrocytes (anti-GFAP), activated microglia / macrophages (anti-ED1) and overall microglial population (anti-Iba1). The damaging patterns werequalitatively evaluated under optical microscopy and quantitatively by counting the number of cells in the ipsilateral and contralateral sides to injury.Descriptive statistics and comparisons within and between groups were performed using analysis of variance with Tukey post-hoc test. Conspicuous ischemic tissue loss, microglial activation and astrocytosis were observed mainly 3 and 7 days after ischemia, which was not observed in control animals. The tissue loss and activation of glial cells were more intense in the somatosensory cortex, followed by the motor cortex. The association cortex displayed less damage compared to other cortical areas, which was confirmed by quantitative analysis. The results suggest that an ischemic lesion of the same intensity induces a differential pattern of tissue loss and neuroinflammation, depending on the cortical area, and that the primary sensory and motor areas are more susceptible to ischemia than association areas.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Ativação microglial, lesão da substância branca e expressão de Nogo-A em ratos submetidos à isquemia estriatal
    (Universidade Federal do Pará, 2012-05-10) LIMA, Rafael Rodrigues; LEAL, Walace Gomes; http://lattes.cnpq.br/2085871005197072
    The objective of this investigation was to evaluate the degenerative pattern of several white matter tracts after striatal ischemic injury, correlating degenerative process standards with the microglial activation and expression of Nogo-A. For this purpose, focal ischemia was induced with stereotactic injection of endothelin in striatum of adult rats, and only in the control animals injected with sterile saline. The animals were perfused 3, 7, 14 and 30 days after ischemia. The brain removed, postfixed, cryoprotected, cut into cryostat sections obtained and submitted to immunohistochemical investigation with the following antibodies: anti-GFAP (1:2000, Dako), anti-Tau-1 (1:500, Chemicon), Anti-MBP (1:100, Chemicon International), Anti-Nogo-A (1:100, Invitrogen), Anti-Iba1 (1:1000, WAKO), ED1 (1:500, Serotec) and Anti-MHC II (Abcam 1:100), besides the viewing of the damage pattern with cresyl violet. Slides are marked by different methods were evaluated qualitatively and quantitatively also some (Anti-Nogo A, anti-ED-1, anti-MHC-II and anti-tau-1), counts were carried out in the striatum and in the corpus callosum. The data were tabulated, statistically analyzed by Tukey test (p <0.05) and micrographs taken of the findings more representative. The slides were stained with cresyl violet revealed an increase in cell density by the infiltration of inflammatory cells to the ischemic area, with a significant increase on day 7. The blades immunostained for GFAP was found progressive increase of the population of astrocytes and an increase in cell volume 7 and 14 days. Oligodendrocyte pathology marked with Tau-1 had peak marking the 3rd day in the striatum and the 7th day in the corpus callosum, and loss of myelin compaction identified by MBP was better at 14, in the different treatment. The microglial activation identified by different immunoblots showed a peak on day 7, both in striatum and in the corpus callosum, but in the corpus callosum with a much smaller number compared to the striatum. The morphology of microglial underwent changes, which found the branched phenotype in control animals, as well as in early and late times after ischemia and amoeboid default / phagocytic day 7, coinciding with the largest number of activated cells. The count of Nogo-A + cells peaked at 3 days observed in the striatum, and there were no differences in the corpus callosum expression Nogo-A 3 to 14 days, only a decrease compared to 30 days. Thus, microinjections of ET-1 induced conspicuous striatal tissue loss, concomitant with progressive microglial activation, astrocytosis, loss of immunoreactivity for myelin basic protein and oligodendrocytes damage in various survival times after focal ischemia. These events affect a few SB tracts, as the corpus callosum. The establishment of the temporal evolution of these events is the neuropathological basis for future studies, in which they should handle the inflammatory response in order to minimize these tissue changes.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA