Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Graphene"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 10 de 10
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Análise de estruturas planares em THz baseadas em grafeno
    (Universidade Federal do Pará, 2016-01-28) NASCIMENTO, Clerisson Monte do; DMITRIEV, Victor Alexandrovich; http://lattes.cnpq.br/0684541646225359
    In this work we analyse the properties of scattering of electromagnetic waves in graphene surfaces and the planar plasmonic based devices made of the same material, both in THz frequency region. The work is presented in form of four scientific papers. In the first one a numerical analysis of the plasmonic waves propagation in graphene elements is performed. The influence of geometrical configuration, chemical potential variation, angle of incidence and polarizations is analysed. That results give us the information to project two devices (the second and third) based on frequency selective surfaces (FSS) on THz range and that are composed only by graphene elements and dielectric substrates without the insertions of different metals. The first device consists in a THz electromagnetic filter made by an planar array of graphene ring-shaped elements placed in both sides of a dielectric substrate. The second device presents new multifunctional graphene device that can operate either as an electromagnetic, dynamically controlled, filter or as an eletromagnectic switch. Both devices operates based on Fano resonance effect. The fourth paper presents a new method of analysis of periodic planar structure, based on group theory approach. This method takes account the transversal and longitudinal components of induced current in the structure. By using this, one can obtain more information about the device properties than by using exitenting methods, which uses only longitudinal components of the induced currents. As application, we suggest an analyse a periodic array of graphene elements.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Circulador de 4 portas baseado em um ressonador elíptico de grafeno na região terahertz.
    (Universidade Federal do Pará, 2020-01-20) OLIVEIRA, Thiago Lima de; DMITRIEV, Victor Alexandrovich; http://lattes.cnpq.br/3139536479960191
    A new type of four-port circulator based on graphene for the terahertz frequency range is proposed and analyzed in this work. It consists of two parallel waveguides coupled laterally to a magnetized resonator in the shape of an ellipse. The cross section of the components has a three-layer structure consisting of graphene, silica dioxides and silicon. The graphene resonator is normally magnetized in its plane by an external DC magnetic field. The physical principle of the device is based on the dipolar resonance of the resonant cavity of magnetized graphene. Using the Theory of Magnetic Groups, we were able to analyze the scattering matrices of the symmetry components of the device. In addition, the Temporal Coupled Modes Theory was used in order to analytically analyze the characteristics of the device. The influence of different parameters on the characteristics of the circulator was investigated using the Comsol Multiphysics software. Numerical simulations demonstrate the isolation of ports 3 and 4 around -32.6 dB and -16.2 dB, insertion losses around -2.5 dB, reflection around -20.3 dB and 5.7 % bandwidth with the center frequency of 5.03 THz. The DC magnetic field of applied polarization is 0.8 T. The central frequency of the circulator can be controlled by the change in the Fermi energy of graphene. Finally, a comparison was made between the numerical and analytical model of the device, using the aforementioned tools.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Circuladores de grafeno de banda ultralarga para região THz
    (Universidade Federal do Pará, 2019-06-07) SILVA, Samara Leandro Matos da; DMITRIEV, Victor Alexandrovich; http://lattes.cnpq.br/3139536479960191
    Non-reciprocal components are indispensable parts of many microwave and optical systems. In the future, THz communication systems will also require these components. Existing publications show that the bandwidth of graphene-based circulators in the THz region can be 10% to 20% with the use of rather complicated structures. The suggested circulators are formed by a graphene junction with concave pattern connected to the waveguides. Graphene is supported by SiO2/Si layers. The circulating behavior is based on the nonsymmetry of the graphene conductivity tensor that appears due to magnetization by a DC magnetic field normally applied to the plane of the graphene. We discuss the main parameters that define the bandwidth and its influence on it. Circulators have record bandwidth that is twice as high as those published. We have shown that the circulator Y can have the bandwidth of 42% in the frequency range (2.75 ÷ 4.2) THz, with the insulation better than −15 dB and the larger insertion losses that −2 dB, provided by the DC magnetic field polarization of 1.5 T and the chemical potential of 0.15 eV. For the two 4-port circulators we achieved a bandwidth of 44% for the same physical parameters.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Dispositivos não-recíprocos baseados em grafeno na região de THz
    (Universidade Federal do Pará, 2019-02-28) CASTRO, Wagner Ormanes Palheta; DMITRIEV, Victor Alexandrovich; http://lattes.cnpq.br/3139536479960191
    Four new types of nonreciprocal graphene-based devices operating in the Terahertz region are suggested and theoretically analyzed in this work. They are two three-port circulators with Y and W geometries and two power dividers with different geometries. The cross section of the components has a three-layer structure, composed of graphene, silica and silicon. The planes of the figures of these components consist of a circular resonator of graphene and waveguides connected to it. The graphene resonator is magnetized normally of its plane by an external DC magnetic field, and the physical principle of operation of the devices is based on the dipole resonance of the magnetized graphene resonator. Using the Magnetic Group Theory, we analyze the scattering matrices of the symmetrical components of the devices. In addition, for the analysis of the circulators, the Analytical Temporal Coupled Mode Theory was also used. Numerical simulations were performed by a full wave computational program and the calculations demonstrate isolation levels better than -15 dB for both the circulators and the dividers. The Y-circulator has insertion losses around - 2.6 dB, bandwidth of 7.4% at the center frequency of 5.38 THz, whereas the circulator W showed insertion losses of - 2 dB, bandwidth of 4.5% at the center frequency of 7.5 THz. The DC bending magnetic field in the two cases was 0.45 T and 0.56 T, respectively. The power dividers have shown to posses the division of the signal between the two output ports of -4.4 dB with in the frequency band of 4.5% and 3.4% with magnetic filed of 0,8 T. The influence of geometric and physical parameters on the characteristics of the circulators is discussed. The frequency bands of the devices can be controlled dynamically by changing bias voltage applied between the graphene layer and the substrate.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Efeitos de Faraday e Kerr em estruturas periódicas metálicas: Grafeno na faixa de THz e Ouro-Dielétrico-Bi:YIG na faixa do infravermelho
    (Universidade Federal do Pará, 2018-10-05) SANTOS, Carlos Rafael Marques dos; DMITRIEV, Victor Alexandrovich; http://lattes.cnpq.br/3139536479960191
    Photonics is a research field whose purpose lies in the use of light (photons), rather than electrons (electronics) in the realization of certain functions such as storage, transfer and processing of signals. In this context, it opens the possibility of development and production of devices whose storage capacity surpasses those of electronic devices. To do this, it is necessary to control the photons similarly, to what is done in electronics with the electrons. The control of radiation, in the context of photonics, can be realized through magneto-optical effects, such as the Faraday and Kerr effects. The Faraday effect is used as the basis of operation of devices such as optical isolators, current sensors and others. In turn, the Kerr effect is the basis of the operation of data storage devices (optical magnetic memory). In the present work, magneto-optical effects of Faraday and Kerr, as well as the transmission of electromagnetic radiation are studied in the regions of terahertz and infrared. In the frequency range that corresponds to the THz, the Faraday effect, the Kerr effect and the radiation transmittance are analyzed in periodic structures of graphene with different geometries. The structures analyzed in this work can present RF, for weak magnetic fields (B =1 T, for example), greater than 3_ depending on the choice of geometry that can be circles, squares, squares with small cuts in the corners and ribbons. Faraday rotation in these systems can be explained by a simple circuit model where the introduction of periodicity in the graphene promotes the increase of the system impedance and consequently changes the magneto-optical properties of the system, improving the rotation of Faraday at high frequencies (larger than 8 THz) still with magnetic field values taken as weak. This characteristic can not be obtained in a uniform sheet of graphene, since it is possible to obtain a strong rotation of Faraday at high frequencies with strong magnetic fields (10 T, for example). Additionally, for the three periodic structures it was calculated the Kerr rotation that can reach the value 3.96_ depending on the geometry chosen. For all cases, the maximum frequency of Faraday and Kerr rotations occur for frequencies greater than 7 THz. These results are better than results already published. In the infrared region are studies the effects of Faraday, Kerr, as well as extraordinary optical transmission in a plasmonic hybrid structure composed of four layers. For this, the Faraday rotation is of 7_ and 0.25 of of transmittance For wavelength 945 nm. Additionally, the Kerr effect can reach 23_. These results are better than results already published. In the proposed structure, the improvement of Faraday’s rotation is due to the increase of the Q factor of the resonances in the magneto-optical material layer.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Estruturas photonic band gap em antena de microfita com aplicações em microondas e terahertz
    (Universidade Federal do Pará, 2019-08-16) OLIVEIRA, Jorge Everaldo de; COSTA, Marcos Benedito Caldas; http://lattes.cnpq.br/7636226766852440
    In this work we are analyzing the simulations of two microstrip antennas. The first is an antenna using the ceramic material Bismuth Niobate (BiNbO4) doped with Vanadium Pentoxide (V2O5) on the substrate. The antenna patch was designed with indented power line to facilitate matching of impedances and the substrate with air holes was placed just below the patch to further decrease the losses. The second is a nano-antenne with Graphene Patch in the Terahertz range and PBG (Photonic Band Gap) substrate with triangular mesh, and holes in the following height configurations h1, h2 and h3. At time h1 the substrate is fully drilled, while at heights h2 the holes will be made top to bottom of the substrate and the height h3 is the antenna with substrate drilled from the bottom up to the middle of the substrate. Therefore three antennas are created in these geometries using a triangular hole network. The arrangement of the holes in the dielectric substrate constitute the PBG structure, to increase the performance and efficiency of these antennas, extinguishing surface waves in the substrate of microstrip antennas. The adopted geometry also improves antenna parameters such as efficiency and bandwidth. The commercial software HFSS and CST were used for the simulations of the antennas. After the numerical simulation steps the results of the parameters of these devices were obtained. The first antenna (periodic lattice with ceramic substrate) obtained a return loss of -36.21 dB, at a resonance frequency of 10,26 GHz, with a bandwidth of 2.18 GHz. In the simulations of the antennas of microstrip with Patch of graphene the antenna h3 obtained double transmission band with chemical potential of graphene of 0,3 eV.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Filtro eletromagnético baseado em grafeno operando na região THz.
    (Universidade Federal do Pará, 2024-04-04) SANTOS, Luis Eduardo de Sena dos; CASTRO, Wagner Ormanes Palheta; http://lattes.cnpq.br/4322608238580829; DMITRIEV, Victor Alexandrovich; http://lattes.cnpq.br/3139536479960191
    In this study, a compact nanoscale plasmonic filter was proposed and numerically analyzed. The plasmonic filter is based on graphene nanoribbons coupled to a disc-shaped graphene resonator with horizontal side cuts and 45o orientation, deposited on a dielectric substrate of silica (SiO2) and silicon (Si) , operating in the THz region. We investigated simple structures that allow tuning the resonance frequency of the resonator. This work provides a viable solution for graphene plasmonic nanofilter structures for future use in highly integrateds plasmonic device applications in THz and FIR regions.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Projeto de um demultiplexador de cristal fotônico bidimensional baseado em grafeno para aplicação em sistemas por divisão de comprimento de onda (WDM).
    (Universidade Federal do Pará, 2024-03-15) SILVA, Alan dos Reis; COSTA, Marcos Benedito Caldas; http://lattes.cnpq.br/7636226766852440
    This work presents an eight-channel 2D photonic crystal demultiplexer based on graphene for application in optical systems that use the wavelength division multiplexing technique - WDM. The optical device was designed based on a square crystalline lattice of silicon dielectric rods immersed in air and is formed by three main parts: Bus waveguide; Octagonal resonator rings and L-curve waveguides. The COMSOL multiphysics software and the Legumes python packages were used to study and simulate the designed structure. In analyzing the simulation results, the resonant wavelength, spectral width, quality factor, transmission efficiency, spacing between channels and the level of electromagnetic interference (Crosstalk) for the eight channels of the demultiplexer were evaluated. Furthermore, the analysis of the results occurred from two different perspectives, in the first of which the relationship between the transmission parameters of the demultiplexer with the variation in the chemical potential of graphene was analyzed and in the second the application of the device in WDM systems was explored. In general, the analyzes carried out proved to be considerable regarding the application of the photonic device in optical wavelength division multiplexing (WDM) systems.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Superfície seletiva de frequências inteligente baseada em grafeno
    (Universidade Federal do Pará, 2019-09-02) PAIVA, Rodrigo Rodrigues; OLIVEIRA, Rodrigo Melo e Silva de; http://lattes.cnpq.br/4768904697900863
    In this work, a formulation based on the finite-difference time-domain (FDTD) and on the exponential matrix methods is developed for modeling thin graphene sheets. This formulation is validated by reproducing problems involving graphene frequency selective surfaces (FSS) known from literature. Then, we propose in this work a smart graphene FSS device. Smartness is obtained by means of a unity cell formed by a graphene ring with a graphene sheet placed in its aperture. By properly regulating the chemical potentials of the graphene elements, two frequency-tunable modus operandi are obtained: single- or dual-band rejection modes. When the device operates in its dual-band rejection mode, either of the rejection bands can be shifted individually in the frequency spectrum. Additionally, both rejection bands can also be reconfigured simultaneously. With the device operating in single-band rejection mode, it is also possible to shift its rejection band in the frequency spectrum.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Theoretical study of plasmonically induced transparency effect in arrays of graphene-based double disk resonators
    (Sociedade Brasileira de Micro-ondas e Optoeletrônica, 2019-03) PORTELA, Gianni Masaki Tanaka; DMITRIEV, Victor Alexandrovich; OLIVEIRA, Cristiano Braga de; CASTRO, Wagner Ormanes Palheta
    In this paper, we consider coupled disk-shaped resonators separated by a thin dielectric substrate that can be used as frequency-tunable filters or as electromagnetic switches in the terahertz frequency band. The two disks are electromagnetically coupled and resonate with dipole plasmonic modes. By using a Temporal Coupled-Mode Theory based approach, we show how to analytically calculate the frequency response of such structures.The analytical results are in good agreement with those obtained from computational simulations based on the finite element method.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA