Navegando por Assunto "Heterogeneous catalysis"
Agora exibindo 1 - 1 de 1
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Decomposição catalítica do glicerol em fase vapor usando a perovskita cecuxni1-xo3 (x=0;0.25) como precursor catalítico(Universidade Federal do Pará, 2017-03-09) ESTRADA, Marcial Antonio Fuentes; FRANÇA, Luiz Ferreira de; http://lattes.cnpq.br/6545345391702172; RIBEIRO, Nielson Fernando da Paixão; http://lattes.cnpq.br/0755443458423442The utilization of the fuels fossils like main source of energy has carried to the generation of countless environmental and economic problems, creating the need of diversification of the energetic matrix. In Brazil, country with vast territorial extension and agroindustry very established stands out the production of biofuels, such as: ethanol and biodiesel. Particularly, the production of biodiesel with the increasing governmental incentives exponentially has its production increased to each year placing Brazil in prominence in the worldwide scene of biofuels. In the process of transesterification of vegetal oils with a primary alcohol, beyond biodiesel, the rude glycerin in a ratio of 10% is generated 11% in volume. The bio refining of the deriving glycerin of the manufacture of biodiesel, becomes the production of biodiesel economically more viable, leading to the formation of products with raised aggregate values. For this reason, the present work has as main objective the valuation of the chain of production of biodiesel for the transformation of glycerol to the products of bigger value added through reaction catalytic decomposition of glycerol using perovskitas of the CeNi1-xCuxO3 type (x=0 and 0,25) as you will catalyze. The gotten results had shown that the use of high temperature (500 °C) favors the gas production of synthesis with approach relation H2/CO of 1, this occur for the strong craqueamento of the molecule of glycerol, At 410 ° C and inert reaction atmosphere, hydroxyacetone (acetol) was the major product exhibiting selectivity in the range of 22-28% depending on the catalyst used. The effect of the addition of hydrogen on the reaction load was investigated and its insertion promoted the hydrogenation of the hydroxyacetone, leading to an increase in selectivity for 1,2-propanediol whose selectivity varied in the range of 4-9% depending on the catalyst.