Navegando por Assunto "Hybrid technique"
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Tese Acesso aberto (Open Access) Projeto e síntese de superfície seletiva de frequências para o padrão IEEE 802.15.3C via técnica de otimização híbrida multiobjetivo de alta precisão(Universidade Federal do Pará, 2019-12-19) MOTA, Raimundo José Santos; CAVALCANTE, Gervásio Protásio dos Santos; http://lattes.cnpq.br/2265948982068382As Redes Neurais Artficiais (Arti_cial Neural Networks _ ANN) são inspiradas na estrutura e nos aspectos funcionais nas redes neurais biológicas. Elas são treinadas através de mecanismos obtidos das propriedades físicas dos processos envolvidos, por exemplo, ondas eletromagnéticas. Do conhecimento adquirido através dessa experiência e aprendizagem, elas podem ser capazes de fornecer soluções prevendo comportamentos de usuários e fornecendo, dentro de uma região de interesse, dados de estratégias precisas para projetos e dimensionamentos. Aqueles que criticaram a aplicação de algoritmos obtidos das ANN, argumentavam que os problemas a serem encarados eram normalmente sem grandes complexidades. Entretanto, os métodos convencionais que foram propostos para resolverem estes mesmos problemas não se mostraram eficientes. Alguns sucessos espúrios ocorreram em certos ambientes bem comportados, mas sem a exibilidade quando se encontra restrições diversicadas. Em concordância a estes desenvolvimentos, também se teve a abertura evolutiva das ferramentas computacionais, que tem dado um suporte extraordinário para o aprofundamento de técnicas para resolver e otimizar problemas antes impensados. Em muitos problemas de otimização, a qualidade de uma solução é definida por seu desempenho em relação a vários objetivos concomitantes. Tais objetivos, não podem ser sensivelmente reduzido a um único valor, por exemplo, usando uma soma ponderada de todos eles ou outra metodologia pertinente, mas deve se considerar a solução dominadora, independentemente uma do outra. Para atingir soluções precisas com redução de custos computacionais, menor tempo de processamento, se apresentam os Algoritmos Evolucionários Multi-Objetivos (Multiobjective Evolutionary Algorithms _ MOEA), somada com a Computação Bioinspirada (Bioinspired Computation _ BIC). Combinando as vantagens dos algoritmos clássicos, surgiram de forma irreversível os Algoritmos Metaheurísticos. Nesses moldes, é apresentado neste trabalho, uma técnica de otimização híbrida Bioinspirada que associa uma Rede Neural de Regressão Geral (General Regression Neural Networks _ GRNN) em combinação com o Algoritmo Multiobjetivo do Morcego (Multiobjective Bat Algorithm _ MOBA), para projeto e síntese de Superfícies Seletivas de Frequência (Surfaces Selective Frequency _ FSS) objetivando sua aplicação no sistema de comunicação de dados, por difusão de ondas milimétricas, especificamente, no padrão IEEE 802:15:3c. O dispositivo projetado consiste em arranjos planares de metalizações (patches), na forma geométrica de losango, dispostos sobre substratos do dielétrico RO4003. A FSS proposta e de_nida neste estudo apresenta resultados e resposta com característica de banda ultra larga. A FSS patch losango projetada é capaz de cobrir a faixa de 40:0 GHz a 70:0 GHz, ou seja, com largura de banda de 30:0 GHz e frequência de Ressonância em 60:0 GHz. As frequências de corte inferior e superior, para o caso da matriz de espalhamento, referente ao coeficiente de transmissão é dado em decibéis (dB), e foram obtidas no limiar de corte em 10dB para controle da banda de operação do dispositivo.Tese Acesso aberto (Open Access) Síntese de superfícies seletivas de frequência para micro-ondas utilizando otimização multiobjetivo bioinspirada(Universidade Federal do Pará, 2015-08-19) ALCÂNTARA NETO, Miércio Cardoso de; D'ASSUNCÃO, Adaildo Gomes; http://lattes.cnpq.br/4159638862269940; CAVALCANTE, Gervásio Protásio dos Santos; http://lattes.cnpq.br/2265948982068382A evolução da computação tem possibilitado avanços substanciais em pesquisas relacionadas à engenharia e em projetos industriais. Nestas áreas, o emprego de ferramentas computacionais tem se intensificado para simulação e obtenção de determinados parâmetros do projeto. No entanto, a crescente demanda por precisão e o aumento gradativo da complexidade das estruturas e sistemas, resulta num processo de simulação cada vez mais demorado, pois a avaliação de um único critério pode consumir várias horas, bem como vários dias ou até mesmo semanas. Logo, um método que minimize o tempo de simulação e otimização, pode, assim, economizar tempo e dinheiro. Nesse contexto, a computação bioinspirada (bioinspired computing - BIC), se apresenta precisa e eficiente, onde muitos métodos computacionais tradicionais falham e, consiste em novo mecanismo para suprir tais dificuldades. Assim, neste trabalho, é realizado um estudo acerca de alguns dos algoritmos BIC mais utilizados na atualidade para projeto e otimização de problemas gerais na engenharia e na indústria. Doravante, se vislumbra desenvolver um código de otimização meta-heurístico multiobjectivo que apresente menor custo computacional e, consequentemente, menor tempo para processamento dos dados. Inicialmente, é realizada uma investigação eletromagnética das superfícies seletivas de frequência triangulares estudadas, através de simulações computacionais. A análise numérica de onda completa é feita pela técnica das integrais finitas com o auxílio de um software comercial muito utilizado para simulações em eletromagnetismo. O processo de síntese consiste em sintonizar a frequência de ressonância das estruturas e a largura de banda de acordo com os objetivos inseridos na função custo dos algoritmos de otimização. A modelagem das estruturas é realizada por uma rede neural artificial e o processo de otimização é realizado por algoritmos meta-heurísticos. Os resultados obtidos por esses códigos são comparados aos simulados pelo software comercial e aos medidos. Observou-se boa concordância entre os resultados simulados e medidos, bem como uma substancial redução no menor tempo de processamento das estruturas. Por fim, são apresentadas as conclusões e as propostas para trabalhos futuros.
