Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Interface gráfica (GUI)"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    DissertaçãoAcesso aberto (Open Access)
    PredictmodelGUI: ferramenta para classificação de genes essenciais através de técnicas de aprendizado de máquina
    (Universidade Federal do Pará, 2025-06-06) MOIA, Gislenne da Silva; SILVA, Cleison Daniel; http://lattes.cnpq.br/1445401605385329; HTTPS://ORCID.ORG/0000-0001-8280-2928; VERAS, Adonney Allan de Oliveira; http://lattes.cnpq.br/2201652617167877; https://orcid.org/0000-0002-7227-0590
    As tecnologias de sequenciamento de DNA proporcionaram avanços significativos no conhecimento sobre o conteúdo gênico de inúmeros organismos, desde microrganismos até seres humanos. Dentre as análises realizadas pelas Ciências Ômicas, a Anotação se destaca como uma das mais importantes. Conceitualmente, esse processo consiste na inferência de informações biológicas a partir de sequências genômicas, o que permite aos Pesquisadores compreender a função de produtos genéticos, como os genes — Unidades Básicas da Hereditariedade responsáveis por características físicas e hereditárias de um organismo. Alguns genes desempenham funções vitais, pois codificam proteínas ou RNAs essenciais para processos como o Metabolismo Celular, que participam em vias cruciais como a Glicólise e o Ciclo do Ácido Tricarboxílico. As Plataformas de Sequenciamento passaram a gerar grandes volumes de dados, o que impulsionou avanços nas Áreas Ômicas e fomentou o desenvolvimento de métodos computacionais voltados às mais diversas análises. Mais recentemente, técnicas de Machine Learning e Inteligência Artificial têm sido aplicadas a esses dados, com estudos que demonstram a eficácia de abordagens inspiradas na Biologia. Esses modelos não exigem programação baseada em regras, embora sua criação ainda requeira habilidades avançadas em Programação e Computação. Com o objetivo de contribuir para a solução desse desafio, este estudo apresenta o PredictModelGUI, uma interface gráfica desenvolvida em Python que implementa nove modelos para classificar Genes Essenciais. A interface permite importar conjuntos de dados, re-treinar os modelos e ajustar parâmetros. As informações são armazenadas no banco de dados do software, o que assegura rastreabilidade e proporciona uma ferramenta simples e intuitiva para testar diferentes configurações.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA