Navegando por Assunto "Jazidas"
Agora exibindo 1 - 4 de 4
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Estudo geoquímico e isotópico dos processos metalogenéticos associados ao depósito de Pb-Zn (Cu-Ag) Santa Maria, região de Caçapava do Sul, Rio Grande do Sul(Universidade Federal do Pará, 2018-05-11) PEREIRA, David Ramos; MACAMBIRA, Moacir José Buenano; http://lattes.cnpq.br/8489178778254136Item Acesso aberto (Open Access) Estudos geológicos, geoquímicos e microtermométricos da jazida de sulfetos de Cu-Zn do corpo 4-E/Pojuca, Serra dos Carajás.(Universidade Federal do Pará, 1985-06-25) MEDEIROS FILHO, Francisco Augusto de; VILLAS, Raimundo Netuno Nobre; http://lattes.cnpq.br/1406458719432983Item Acesso aberto (Open Access) A jazida de wolframita de Pedra Preta, granito Musa, Amazônia Ooriental (PA): estudo dos fluidos mineralizantes e isótopos estáveis de oxigênio em veios hidrotermais(Universidade Federal do Pará, 1995-11-14) JAVIER RIOS, Francisco; VILLAS, Raimundo Netuno Nobre; http://lattes.cnpq.br/1406458719432983The Pedra Preta wolframite deposit contains the main known tungsten reserves of the Brazilian Amazon. It is Iocated near the western border of the 1.88Ga old Musa grafite, in the Rio Maria region, south of the Carajás Mineral Province. The mineralization occurs in a vein system thats cuts at depht the cupola of the granitic body and above it rocks of the Andorinhas Supergroup whose meta-sandstones are of archean age (2.9 Ga). At least four hydrothermal events have been identified in the Pedra Preta area which are related to severa' quartz vein generations. The first event is represented by the early EHV veins that are basically made up of quartz 1 and have been generated, prior to the emplacement of the Musa grafite, from metamorphic aquo-carbonic fluids. CH4 was the dominant carbonic phase. Fluid inclusions from the quartzite quartz grains showed H2O + CH4 with lesser amounts of CO2. The second event was associated to the Musa intrusion and involved F-poor aqueous fluids exsolved from the erystallizing magma. Once the granite was broken by hydraulic fracturing, fluids that circulated around the pluton moved towards it, mixed with the magmatic aqueous solutions and flowed through the open spaces where quartz 3 was precipitated. The late hydrothermal veins (LHV) began then to be formed. These Ca-free fluids had moderate salinity and were virtually devoid of carbonic phases. δ18O values for quartz 2 (present in the grafite) and quartz 3 (present in the LHV at greater depths) are comparable (7.6‰) indicating reequilibration with dominantly magmatic fluids. The third event was induced by the tectonic reopening of the fracture planes where the quartz 3 had been deposited. They served as escape tone for metamorphic fluids composed of different proportions of CH4, CO2 and H2O. The aqueous phase rnight have been of low salinity although containing Ca++. Temperatures varied from 230 to 400°C and pressures estimates fell in > 2,5 Kbar. Oxygen fugacity values of 10-38 to 10-37 bar indicated reducing conditions. As the metamorphic fluids entered the Pedra Preta system, they were oxidized, though, at least initially, the process had been less complete in the upper part of the deposit. Oxygen fugacities dropped to 10-27 bar by the time the wolframite began to precipitate from acidic solutions (pH 4-5) under therrnal conditions of 300-400°C and pressures > 2.5Kbar. δ18O values for quartz 3 of the LHV (9.0-9.6‰) at lower depths suggested reequilibration with fluids having more metamorphic components than those of greater depths. Soon after or partially contemporaneous with the wolfrarnite deposition, occurred a F-metasomatism brought about by a hypothetical magmatic pulse. Granitic rocks were then greisenized in the lower part of the deposit to a mineral assemblage in which topaz, fluorite and sericite are present, whereas in the upper part these minerais precipitated within the LHV as well as in the host walls. The fluids of this hydrothermal stage were aquo-carbonic, suggesting that mixing with the metamorphic solutions continued, but the carbonic phase was exclusively composed of CO2. Xco2 dropped to values below 0.01 by the time fluorite was formed. Aqueous phase was enriched in Ca++ and Na+. Temperatures did not change much from the deposition of wolframite to the deposition of topaz (300-350°C), but fell to about 250°C when fluorite started precipitating. Despite similar prevailing conditions both in the lower and higher parts of the deposit, irnportant features are recorded that differentiate these two domains. The most striking difference is the much more abundant wolframite precipitation in the upper part. Besides the structural control, the mineralization might also have been controlled by the more frequent metavolcanic lens of the Babaçu Group in the upper part, from which the W-bearing aquo-carbonic solutions leached iron for the precipitation of wolframite. The last hydrothermal event, that resulted from tectonic relaxation probably of Brasiliano age, gave origin to the so-called final veins (FHV) which constitute a net of microveinlets composed of quartz 4, chlorite, sulfides, carbonates and quartz 5. High salinity fluids (30 weigth % NaCl) with high concentration of Ca++ and Na+ acted upon the rocks at conditions of 1.5 Kbar and temperatures beiow 250°C, and may represent connate waters or even deep groundwaters. Chioritization and sulfidization were the most important processes related to this hydrothermal event which ied to the precipitation of chlorite (that replaced feldspars and micas in the host rocks or filled intergranular spaces within the veins) as well as sulfides (mainly chalcopyrite and pyrite). As the system finally died out, drusy quartz 5 was formed trapping low salinity fluids (<5 weigth % NaCl). Pressures were around 5 bar and temperatures reached no more than 100°C suggesting contribution of superficial meteoric waters.Item Acesso aberto (Open Access) Microquímica e mineralogia de processos do minério de cobre de Salobo, Carajás(Universidade Federal do Pará, 2002-03-18) CHOQUE FERNANDEZ, Oscar Jesus; COSTA, Marcondes Lima da; http://lattes.cnpq.br/1639498384851302The Salobo deposit, located in Carajás, southeastern of Pará, is one of the largest copper reserves in Brazil. Although severa! mineralogical studies have been developed for this ore, its origin is still controversial, with severa! interpretations, such as volcanogenic copper-bearing oxide and voicanogenic massive sulfide and iron oxide (Cu-U-Au-REE). In comparison with other well-known deposits, it is a rare example of mineralization. Particular characteristics such as disseminated mineralization, fine grain and its hardness impose serious difficulties to copper concentrates production. Due to ore complexity it is difficult the metallurgical treatment, reasons why it is constantly submitted to geological and technological reevaluations. The literature on Salobo deposit is expressive but detailed works about microchemistry and technological characterization in comminution are rare or restricted to Salobo Metais S.A. company. The objectives of this work dealt with these questions. Microchemical analyses using microprobe and SEM/EDS in samples of holes and ore piles (research gallery G3) of Salobo, allowed the identification of sulfide mineralization with bornite (4%), chalcocite (2%) and chalcopyrite (0.5%), and variable proportions of molybdenite, cobaltite, safflorite, niqueline, siegenite, gold, silver, graphite, ilmenite, hematite, Te-Ag, uraninite and REE minerais. These minerais occur in schist iron formations where the deposit es found: a) magnetite and massive fayalite, eventually banded and b) banded biotite and magnetite. These groups considered as gangue (magnetite 53% and silicates 40%) contain minor amounts of gamet, amphibole, quartz, plagioclase and subordinate amounts of fluorite, greenalite, minnesotaite, stilpnomelane, apatite, monazite, allanite and occasionally siderite, goethite and malachite. Sulfides are preferentially concentrated in magnetite rich iron formations. Copper sulfides occur as crystals less than 3.0 mm and as disseminated fine grains, with fine alternated banded and/or foliated silicates, veiniets and/or long/short stringers, tiny inclusions, bornite/chalcocite and bornite/chalcopyrite mirmekitic intergrowth and bornite-chalcocite and bornite-chalcopyrite substitutions. These minerais were formed by complex processes and are characterized by compositional controls, mainly for the presence of Fe in them. Solid solutions of bomite and chalcopyrite were formed at high temperatures and gave way to those iron excesses. Atomic radios Cu/Fe of bomite (4.3-4.9) and chalcopyrite (average of 0.9) at high temperatures allowed the co-existence of bornite-chalcopyrite equilibrium and therefore of bornite/chalcopyrite. Iron contents (maximum 0.96%) in chalcocite have been incorporated at those temperatures when the structure is highly disordered. Chalcopyrite lamellaes following the { 111 } orientation in bornite as well as the bornite/chalcocite and bornite/chalcopyrite intergrowth suggest exsolution. Although those phases are associated with severa' minerais in different paragenesis, the ore features have been affected drastically by metamorphism difficulting the reconstruction of its pre-metamorphic evolution. Ore grinding produced physical changes in the grain size and according to time, long or short, of mineral comminution the pulp reologie is modified. That process originates a grain size - 270 # (53 µm), 80 % wt. passing, grounding time on 4 hours (dry) and 2 hours (humid) adapted to copper concentration. Different volumetric fractions of copper sulfides in particles were obtained through both processes: larger fraction (6 % volume) to grain sizes < 53 µm and with a prevailing fraction (7 to 15 % volume) ranging from 26.9 to 7.5 µm. Physical modification shows larger magnetite proportions than silicate ones with a clear incidence of magnetite density in the hydrocyclone classification. Mineralogically, in the comminuted products, occur the same minerals established in ROM but with chemical modifications in copper sulfides. Magnetite is the main host for sulfides and greenalite is more frequent among the silicates, fluorite being also common. Proportions of S, Fe and Cu in bornite, chalcocite and chalcopyrite are variable relative to ROM and stoichiometry, varying in function of the grain size (larger chemical variation in grain sizes of 26.9 to 7.5 pm than on the 2360 to 37µm fraction). Iron can reach up to 6.0% wt. in chalcocite. Chemical variations in S, Cu and Fe formed ternary sulfides: bornite, characterized as "complex mistures" rich in iron (Cu4.34-4.76Fe1.03-1.04S4.0) and chalcopyrite rich in Fe Cu0.93Fe1.08S2.0 (as a solid solution extension of chalcopyrite). Chalcocite oxidation and high values of Fe in its structure also contributed to the reaction of binary sulfides: djurleite and digenite Cu1.77-1.84Fe0.04-0.06S1.0. Those ternary (Cu-Fe-S) and binary (Cu-S) copper sulfides have been formed in the initial oxidation state with superficial alterations induced by temperature (25°C on) and comminution. These sulfides were formed and controlled by the phase relationships in the Cu-Fe-S system. Low copper content in sulfides leads to a slower chemical variation than there is an excess of iron. These variations favoured the appearance of oxidized surfaces on copper sulfides with different products of oxidation [M1-nS and nM(OH)2]. Chemical variations showed to be dependent on the grain size, with smaller oxidations in sizes > 53 µm and larger oxidations in sizes <53 µm, caused by a combination of surface area and ability of chalcocite to be oxidized. Iron excess mainly as highly reactive colloidal particles could have been generated by: mill material, abrasive action of particles and probable magnetite oxidation, producing chemical variation in mill atmosphere and electrochemical corrosion processes. Comminuted ore conserves the lepidoblastic textures of the silicates biotite, fayalita and greenalite and granoblastics of magnetite or bornite, chalcocite and chalcopyrite grains. Crystals of copper sulfides, liberated and mixed with high percentage of magnetite and silicates are intensively fractured and eroded and sometimes fullfilling cracks and/or fractures of greenalite. They difficult the sulfide liberation. Copper sulfide liberations increase gradually when the grain size is finer (more than 50 % in grain sizes < 29.6 µm). Only in fractions < 37 µm (Cumulative liberation yield CLY90), the copper bearing particles begin to migrate and for higher degrees of liberation though such tendency can still be insufficient for the purposes of sulfide concentration. Besides the strong metamorphic recrystallization of the schists of ore formations, its high hardness, the extremely variable grain sizes of sulfides (5 to 300 µm) and the mineralogical ore complexity (mineralogical associations, disseminations, intergrowth complexes), this microchemical investigations, in ROM and in comminution products, revealed a significant chemical variation in copper sulfides. Iron present in sulfide mineral reticules is the main contaminant to chemical modifications (Cu/Fe ratio) influencing the quality of copper concentrate in mineral processing. It has been already established that between copper sulfides and other components of pulps during grinding and flotation (water, species collectors or modifiers) occur an interaction through electrochemical mechanisms producing oxidized species, where the chemical composition of the mineral in question is very important. The technological alternative adapted to treat the copper concentrate, with basis in mineralogical and microchemical studies in run-of-mine and comminution products, seems to be the hydrometallurgy because they can take advantage the production of fine grains and to use the reground for ultrafine grains production. These can be submitted to oxidation processes of sulfides to promote copper extraction. Finally the metallic copper extraction can follow the solvent extraction/electrowinning (SX/EW) process.