Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Kaolinite"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 4 de 4
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Aplicação de resíduos da mineração de bauxita na síntese de geopolímeros
    (Universidade Federal do Pará, 2022-04-08) BARRETO, Igor Alexandre Rocha; COSTA, Marcondes Lima da; http://lattes.cnpq.br/1639498384851302; https://orcid.org/0000-0002-0134-0432
    The process of extraction and beneficiation of bauxite deposits in the bauxite province of Paragominas/Rondon do Pará can generate large amounts of waste, mainly in two stages of the process: mining and processing. In the mining stage of the deposits, the “residue” comes from the removal of a thick layer of clay material (known as Belterra Clay). On the other hand, the “residue” from the beneficiation process is generated after the crushing, grinding and washing stages, which give rise to a large amount of clay material dispersed in a large amount of water. For the present study, it selected Belterra clay from the bauxite deposits of Rondon do Pará, a sample of Bauxite Washing Clay from the Hydro company and a sample of kaolin benefited from Imerys Company. The samples and geopolymers were characterized by X-ray Diffraction (XRD), X-ray Fluorescence (FRX), Gravimetric Thermal Analysis (TG), Differential Exploratory Calorimeter (DSC), Optical Emission Spectrometry with Coupled Plasma (ICP-OES) and Laser Particle Analyzer (APL). Geopolymers were synthesized from Belterra clay, microsilica and NaOH according to the Box-Benkhen design. Synthesis of geopolymers from Belterra clay and beneficiated kaolin was also carried out (a comparative study) using KOH and microsilica. Finally, geopolymers were synthesized from Bauxite washing clay with NaOH and microsilica according to the Doehlert design. In the study with only Belterra clay, the highest resistance result was 47.78MPa and the lowest result was 7.05MPa. In the comparative study between Belterra Clay and beneficiated kaolin, the best results of compressive strength were obtained with the beneficiated kaolin. The compressive strength results of the geopolymers synthesized from the Washing Clay ranged from 8.99 to 41.89MPa. These results demonstrate the positive potential of both samples for the synthesis of geopolymers that can be used as possible “Eco-friendly” substitutes for traditional materials, mainly ceramics and cement.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Mineralogia e geoquímica de bauxitas de Barro Alto (Goiás): considerações genéticas
    (Universidade Federal do Pará, 2019-10-01) MOURA, Vitor Hugo Santana; COSTA, Marcondes Lima da; http://lattes.cnpq.br/1639498384851302
    In the municipality of Barro Alto, Goiás, a bauxite deposit was developed, mostly, on Neoproterozoic anorthosites. According to recent published data, the general mode of occurrence reinforces the lateritic origin, since bauxite follows the current topographic surface. However, the succession of the horizons is not corresponding to the others of the lateritic model, at least partially. The absence or restricted size of the clay horizon with kaolinite, or the presence of kaolinite bodies sectioning the bauxitic body, which locally reaches large thicknesses, overturn the simple lateritic model. This is reinforced by the absence of the classic leopard skin-like pattern or similar iron-aluminous crust and the absence of other coverage. For various authors the wide occurrence of extensive macrocrystalline, botrioidal gibbsite, apparently occupying venules and fracture walls suggests, along with the diversity of the way of occurrence of clays, a contribution of another process, not only lateritization. From this information a study was elaborated to deepen the knowledge about the formation of the Barro Alto bauxite, detailing the generations of gibbsite and kaolinite, as well as to try to identify the lateritic and hydrothermal contributions with these minerals. In the field, 5 mines explored by the company EDEM - Mineração LTDA were studied (Mining 1, Mining 2, Mining 5, Mining 6 and the SELA trench). From these mines, a greater detail was made in mines 1, 2, 5 and in SELA trench. Forty-eight samples were collected from which 22 most representative samples were selected for laboratory analysis involving mineralogical (X-ray Diffractometry), textural (Optical and Scanning Electron Microscopy), and chemistry (Inductively Coupled Plasma Mass and Optical Emission Spectrometry) characterization. In general, the bauxitic profile of Barro Alto comprises the anorthosite as substrate and possible source rock, on which a porous bauxite horizon (HBP) with stockworks and flint-type veins of kaolin (CF), and locally with subcentimeter corundum crystals (HBPC) was established. They converge to a bauxitic clay zone (ZAB) and then to a massive bauxite horizon (HBM). This in turn is superimposed by a capping formed by centimetric to decametric blocks and nodules of massive bauxite (HBANB), whose occurrence suggests a colluvial formation. In the profiles the horizons HBP, HBPC, HBM and HBANB consist essentially of gibbsite and kaolinite, sometimes containing accessory minerals such as corundum (HBPC), followed by hematite and goethite. In CF and in the bauxite clay zone (ZAB) the dominant mineral is kaolinite and/or halloysite, followed by gibbsite. The chemical composition of the bauxitic profile is basically composed of Al2O3, SiO2 and Fe2O3. CaO, MgO, K2O, MnO, Na2O and P2O5 concentrations are very low (generally <0.09), even below the analytical detection limit. TiO2 contents are also relatively low, generally <0.2%. Trace element concentrations when compared to the average values of the Earth's Upper Crust (EUC) are generally very low. The concentrations of elements such as Cr, Co, Cu, Zn, Rb, Sr, Y, Zr, Nb, Cs, Ba, Hf, Pb, Th and U are below EUC in all horizons. Only the element Mo has more concentrated values in all horizons. On the other hand, V, Ni, Cu, Cr, Ga, and Pb may eventually have higher values especially in some parts of CF and ZAB. Rare Earth Element (REE) concentrations are below the crustal average in all samples studied and also in the anorthosite. The higher concentrations are typically related to the clayey units such as CF and ZAB, and also to the presence of Fe oxides-hydroxides (HBPC). When normalized to the chondrites, the curves exhibit a slightly similar distribution pattern except for porous bauxite with corundum. There is a slight LREE enrichment and a HREE tendency, but only from Tm to Lu. This behavior resembles that of anorthosite, but with much lower concentrations, except for Tm. It is clear the negative anomalies in Ce and positive in Tm, anomalies linked to LREE depletion and a slight enrichment of HREE. From these mineralogical and chemical data, it was possible to distinguish three distinct generations of gibbsite and kaolinite: Gibbsite (I): of the porous bauxitic horizon, which appears to be that formed directly from the plagioclase and almandine; Gibbsite (II): associated with flint kaolin, along with kaolinite, halloysite and even locally hematite; Gibbsita (III): Cohesive and macrocrystalline, sometimes drusic and overlapping the thinner and more compact botryoidal gibbsite. It forms isolated bodies, apparently disconnected from the larger set of bauxites, in pockets of tens of meters wide and depths greater than 40 m; Kaolinite (I) at the gibbsite - anorthosite interface. This kaolinite makes up the halos of anorthosite alteration, when it does not go straight to gibbsite; Kaolinite (II) corresponds to that of flint kaolin, associated with halloysite and sometimes gibbsite. It occurs in the form of venules, veins and pockets, and vertical fractured zones, the stockworks in general. Kaolinite (III) corresponds to that found mainly in the clayey bauxite horizon with nodules, in which this mineral is yellowish, earthy, invading the bauxite mass and involves the centimetric to decametric nodules. The generations of gibbsite, I, II and III, especially II and III, are not compatible with lateritic evolution, likewise the kaolinite, I, II, and III generations, where I and II are not clearly lateritic, and the III seems to be current pedogenetic. Therefore, it is likely that Barro Alto bauxites are the product of the intense subsurface hydrothermal activity of anorthosites, due to the strong structural deformation in which these rocks were subjected in their final post-emplacement stages.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Mineralogia e geoquímica do perfil laterito bauxítico na serra Sul, Província Mineral de Carajás
    (Universidade Federal do Pará, 2020-11-03) RODRIGUES, Paulo Ronny Soares; COSTA, Marcondes Lima da; http://lattes.cnpq.br/1639498384851302
    The Amazon holds the largest reserves of bauxites in Brazil, located in Trombetas, Juruti, Paragominas and Rondon do Pará. The Carajás region, with large lateritic deposits, especially of iron, is also emerging with potential for bauxite deposits, with emphasis on those of Serra Norte. In Serras Sul, smaller occurrences were identified, which were investigated in this work. In this context, field activities were carried out with sample collection and textural, mineralogical and chemical analyzes and then a genetic discussion was presented. In four alteration profiles on a side road near the Serra Sul, after geological cartography, 23 samples were collected, which were described, photographed and prepared for mineralogical analysis (X-ray diffraction), textural (optical and scanning electron microscopy) and chemical (mass and optical emission spectrometry, with inductively coupled plasma). The bauxite laterite profile comprises from the base to the top of: 1) Kaolin Horizon (HC); 2) Mottled clay Horizon (HAM); 3) Nodular Bauxite Horizon (HBN); 4) Clayey Bauxite Horizon (HBA) and 5) Ferruginous crust Horizon (HF); and finally to the top 6) Dismantled crust ferruginous horizon (HFD. The chemical composition is essentially dominated by Al2O3, Fe2O3, SiO2 and TiO2, which compose the main minerals, kaolinite, gibbsite, hematite, goethite and anatase. The trace elements V, Cr, Cu, Ga, As, Zr, Cd, Hf, Bi and Th, whose concentrations are generally higher than those of the Upper Crust of the Earth, are more concentrated in the ferruginous horizons, related to Fe oxy-hydroxides (hematite and goethite) and also to zircon. On the other hand, the elements Co, Zn, Se, Rb, Sr, (Nb), Ag, (Sn), Cs, Ba and Pb are at lower levels than theUpper Continental Crust, and their concentrations are lower in ferruginous horizons, suggesting affinity with clay minerals.ETR at levels lower than UCC, are enriched in ETRP and present strong positive and negative C and positive Eu anomaly, and suggest distribution in zircon, oxy-hydroxides of Fe and other mineral phases. and mass clearly demonstrate a complete lateritic evolution, only partially modified in its upper portion. The bauxite zone, however, does not have local potential for ore, due to the low content of usable alumina and high in reactive silica. However, its occurrence opens an opportunity for further research in view of the geological and paleoenvironmental potential of the Mineral Province of Carajás.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    The Belterra Clay On The Bauxite Deposits Of Rondon Do Pará, Eastern Amazon
    (Sociedade Brasileira de Geologia, 2018-09) NEGRÃO, Leonardo Boiadeiro Ayres; COSTA, Marcondes Lima da; POELLMANN, Herbert
    Bauxite deposits in the Amazon region are commonly covered by yellowish clays which can reach up to 25m thick, known as Belterra Clay (BTC). In Rondon do Pará, Eastern Amazon, BTC is 13m thick and covers world-class bauxite reserves. Three pilot bauxite mines were investigated in Rondon do Pará for an initial characterization of the local BTC. In discordant contact with the lateritic profile, the BTC has reddish brown colors at its base to ocher tones towards the top. It has a massive structure with silt-clayey texture and nodular bauxitic fragments at its base. Rietveld mineral quantification of the material attests that it is dominated by kaolinite, with goethite, gibbsite, hematite, anatase and residual quartz. The thermal behavior of the material also confirms its mineralogical composition. Kaolinite is of low structural order, which was considered the main difficulty in the application of the Rietveld method. Goethite has up to 33 mol% of Al. As observed by scanning electron microscopy (SEM), the minerals represent pseudo-hexagonal crystals measuring from 150 to 700 nm. The BTC in the studied area is correlated to BTC on others bauxitic deposits of the Amazon region, suggesting this material experienced the same genesis and geological evolution, probably during the Pliocene.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA