Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Knowledge discovery in data bases"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Experimentos de mineração de dados aplicados a sistemas scada de usinas hidrelétricas
    (Universidade Federal do Pará, 2012-04-13) OHANA, Ivaldo; BEZERRA, Ubiratan Holanda; http://lattes.cnpq.br/6542769654042813
    The current model of the Brazilian electric sector allows equal terms to all actors and reduces the role of the State in this sector. This model forces the electrical utilities to improve the quality of their products and, as a prerequisite for this purpose, they should make more effective use of the enormous amount of operational data that are stored in databases, acquired from the operation of their electrical systems which use the hydroelectric power plants as their main source of energy generation. One of the main tools for managing the operation of these plants are the Supervisory Control and Data Acquisition systems (SCADA). Thus, the large amount of data stored in databases by SCADA systems, certainly containing relevant information, should be treated to discover relationships and patterns that would help in the understanding of many important operational aspects as well as in the evaluation of operational performance of the electric power systems. The process of Knowledge Discovery in Database (KDD) is the process of identification of patterns in large data sets, that are valid, new, and useful to improve the understanding of a problem or a decision-making procedure. Data Mining is the step within KDD that extracts useful information from large databases. In this scenario, the present study objective is to perform data mining experiments on data generated by power plants SCADA systems, to produce relevant information to assist in planning, operation, maintenance and security of hydro power plants and also contribute to the implementation of the culture of using data mining techniques applied to these plants.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA