Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Libélula"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 3 de 3
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Padrão de distribuição de Odonata (Insecta) em sistemas aquáticos com exploração de madeira na Amazônia Oriental: seleção de microhabitat e características morfológicas das libélulas
    (Universidade Federal do Pará, 2017-01-06) CALVÃO , Lenize Batista; JUEN, Leandro; http://lattes.cnpq.br/1369357248133029; LOPES, Maria Aparecida; http://lattes.cnpq.br/3377799793942627
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Padrões de estruturação de adultos de libélulas em uma área de proteção e seu entorno na Amazônia oriental
    (Universidade Federal do Pará, 2016-09-30) MONTEIRO JÚNIOR, Cláudio da Silva; JUEN, Leandro; http://lattes.cnpq.br/1369357248133029; ESPOSITO, Maria Cristina; http://lattes.cnpq.br/2112497575917273
    In Brazil is the most protected areas (PA) in the world, and mostly located in the Amazon. Currently, the Amazon biome has 73% of APs Brazil or 111 million hectares, 37% full and 63% use of sustainable use. Despite the large number, biodiversity does not have its assured conservation, since the population increases every year, as well as demands for goods and services that result in modifications of the ecosystems that are often outside or even inside the PAs. So our main objective is to study the Odonata adult structuring patterns in a protected area and its surroundings. For this, the thesis is divided into three chapters held in streams in the eastern Amazon. In the first chapter, our hypothesis was to test whether we would find a greater diversity of species of dragonflies in AP due to greater complexity of habitats. In the second chapter, we tested the hypothesis that there would be high beta diversity due to the high replacement species that is expected to find. In the third chapter, we tested the hypothesis that Odonata would be a weak to moderate substitute for other groups, because of the inherent characteristics of the group, as the great mobility. The study was carried out in 30 streams, 17 located within a protected and 13 in the surrounding area. The results of the first chapter were the largest diversity of Odonata found in the environment, compared with the AP. There were also differences in the species composition of the two environments, and differences between environmental variables between areas. Thus, the combination of the protected area and the surroundings, with a low level of disturbance retains a broad range of specialist species Odonata than just a single area. In the second chapter, there was a high beta diversity in Odonata both the AP and in the environment, possibly explained by the niche breadth combined with the spatial structure of the environment. In addition, we found that the specific requirement of the species happens associated with a natural variation in the environment, since there was large beta diversity and high turnover in both environments. Even with some environmental change, it was not big or strong enough to exclude all species and therefore they can survive in this environment. In the third chapter, we tested the correlation between adult Odonata with other aquatic groups such as fish, Ephemeroptera and Trichoptera combined (ET) and chironomids in streams of the Eastern Amazon. There was a correlation between species richness and consistency of Odonata of adults with fish and ET, though the strength of these correlations were moderate to low. So we discussed that adult Odonata are a moderate to weak group substitute for other aquatic organisms in streams of the eastern Amazon. Thus, we suggest caution in the use of a single taxon as a substitute for others and for conservation planning, the best would be to use a wide range of taxa, reflecting holistically aquatic biodiversity. Finally, both areas of protection becomes important to maintain the pool of own species of each environment, with our major challenge in the future is to find a way to identify the disturbance levels that would be acceptable to avoid over-exploitation of resources in these areas.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Taxonomia de Dasythemis (Karsch, 1889) (Odonata: Libellulidae)
    (Universidade Federal do Pará, 2024-11) MIRANDA FILHO, Jair da Costa; VILELA, Diogo Silva; http://lattes.cnpq.br/3091410701509383; NASCIMENTO, Jeane Marcelle Cavalcante do; http://lattes.cnpq.br/3880118795645876; https://orcid.org/0000-0002-5428-7495
    Among the insects of the order Odonata, the suborder Anisoptera stands out for its cosmopolitan distribution and high dispersal capacity. This is made easier by their broad, non-petiolate wings, with a developed anal area on the hind wings. When perched, individuals of this suborder are recognizable by keeping their wings open. They also have a robust body and high flight capacity. Anisoptera is currently divided into five superfamilies: Aeshnoidea, Petaluroidea, Gomphoidea, Cordulegastroidea and Libelluloidea. Libelluloidea includes the most diverse and ubiquitous family, Libellulidae, which includes the target group of this study. Dasythemis is endemic to South America and has a complex taxonomic history. The lack of recent studies highlights significant gaps in understanding the diversity, taxonomy and geographical distribution of species in this group. Considering this, the present research aimed to fill these gaps through a detailed review of the literature, analysis of material collected from different regions, and a comprehensive study of morphology. To achieve this, 168 specimens from 11 institutions in three South American countries - Argentina, Brazil and Peru - were analyzed. The specimens were identified based on general identification keys and original descriptive works. For the redescriptions, the wing terminologies followed the proposal by Riek and Kukalová-Peck (1984), with modifications by Bechly (1996). The nomenclature of other morphological structures was based on Asahina (1945) and Garrison et al. (2006). Photographs were taken using a stereomicroscope equipped with a camera and illuminated by an LED dome for uniform lighting. As a result, all species and one subspecies were redescribed in a standardized manner, employing features used in more recent studies on the group. All species were illustrated with photographs; additionally, the vesica spermalis was examined using Scanning Electron Microscopy (SEM), illustrating this structure in detail for the first time.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA