Navegando por Assunto "Load forecasting"
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Tese Acesso aberto (Open Access) Estratégia para predição de consumo de energia elétrica de curto prazo: uma abordagem baseada em densificação com MEAN SHIFT para tratamento de dias especiais(Universidade Federal do Pará, 2016-11-04) RÊGO, Liviane Ponte; FRANCÊS, Carlos Renato Lisboa; http://lattes.cnpq.br/7458287841862567; SANTANA, Ádamo Lima de; http://lattes.cnpq.br/4073088744952858Estratégias de predição de curto prazo são uma importante ferramenta usada para planejamento e operação de sistemas elétricos, bem como fundamentais para o processo de suporte à decisão para compra e venda de energia elétrica no mercado futuro. Particularmente, em se tratando de mercado de energia, uma componente importante para predição de consumo são os dias especiais (feriados ou dias atípicos, por exemplo). Tratar-se a predição de tais componentes pode ser uma tarefa complexa, dado seu comportamento atípico, quando comparado à predição de consumo em dias comuns. Em adição, via de regra, o número reduzido de amostras dificulta o treino e validação adequados dos algoritmos de predição de consumo em dias especiais. Este trabalho propõe um modelo para predição de consumo de curto prazo que utiliza a técnica Information Theoretic Learning Mean-Shift para clusterização e densificação dos valores de consumo em dias especiais, e algoritmos de Redes Neurais Artificiais e Regressão Linear Múltipla para predição. O modelo foi aplicado em um problema de predição de consumo da concessionária de energia elétrica da região norte do Brasil, o que proporcionou uma melhoria na acurácia dos resultados já obtido pelos métodos utilizados pela concessionária.Dissertação Acesso aberto (Open Access) Modelos para previsão de carga a curto prazo através de redes neurais artificiais com treinamento baseado na teoria da informação(Universidade Federal do Pará, 2011-11-04) ALVES, Wesin Ribeiro; CASTRO, Adriana Rosa Garcez; http://lattes.cnpq.br/5273686389382860O conhecimento prévio do valor da carga é de extrema importância para o planejamento e operação dos sistemas de energia elétrica. Este trabalho apresenta os resultados de um estudo investigativo da aplicação de Redes Neurais Artificiais do tipo Perceptron Multicamadas com treinamento baseado na Teoria da Informação para o problema de Previsão de Carga a curto prazo. A aprendizagem baseada na Teoria da Informação se concentra na utilização da quantidade de informação (Entropia) para treinamento de uma rede neural artificial. Dois modelos previsores são apresentados sendo que os mesmos foram desenvolvidos a partir de dados reais fornecidos por uma concessionária de energia. Para comparação e verificação da eficiência dos modelos propostos um terceiro modelo foi também desenvolvido utilizando uma rede neural com treinamento baseado no critério clássico do erro médio quadrático. Os resultados alcançados mostraram a eficiência dos sistemas propostos, que obtiveram melhores resultados de previsão quando comparados ao sistema de previsão baseado na rede treinada pelo critério do MSE e aos sistemas previsores já apresentados na literatura.
