Navegando por Assunto "Nanotubos de carbono"
Agora exibindo 1 - 17 de 17
- Resultados por página
- Opções de Ordenação
Tese Acesso aberto (Open Access) Aço inoxidável nanoestruturado produzido via soldagem a arco elétrico.(Universidade Federal do Pará, 2021-07-08) LOAYZA, Cristhian Ricardo; BRAGA, Eduardo de Magalhães; http://lattes.cnpq.br/4783553888547500Manufacturing methods of nanostructured stainless-steel composites (NSSC) have not yet been developed with industrial applicability. To overcome this shortage, the possibility of incorporating nanoparticles by electric arc welding was investigated, using a tubular rod filled with nanostructured flux composed of multi-walled carbon nanotubes (MWCNT) and 304L stainless steel particles. This flux was manufactured by two different methods: mechanical alloying (MA) and chemical treatment (CT) with hydrogen peroxide. The second showed more promising results using control of kinetic parameters of time and temperature, obtaining a lower degree of amorphous carbon, impurities, and crystalline defects, increasing their crystallinity and interaction of the nanotubes with the metallic matrix. MWCNT incorporation decreased the grain size by 64% when compared to the stainless-steel coating, possessing an austenitic matrix with carbide precipitation in the interdendritic spaces and grain boundaries. The microhardness increased 45% and the rate of erosion by vibratory cavitation decreased 64%, in relation to the AISI 304L coating. Additionally, XRD analyses showed a reduction of the γ{200} phase and a growth of γ{111} after the cavitation process. The method of manufacture of the nanocomposites proved to be economically viable and with the possibility of immediate application on a large scale.Tese Acesso aberto (Open Access) Análise do enxofre corrosivo em óleo mineral isolante e remoção do dibenzil dissulfeto com nanotubos de carbono baseados em matriz metálica(Universidade Federal do Pará, 2012-05-07) SARAIVA, Augusto Cesar Fonseca; DEL NERO, Jordan; http://lattes.cnpq.br/5168545718455899Unexpected failures in transformers led to the identification of copper sulphide formation, deposited on the conductors. The qualitative presence evaluation of corrosive sulfur in insulating mineral oil, led to a change in the Brazilian standards ABNT NBR 10505, which assesses the presence of corrosive sulfur in mineral oil, change in the time and test temperature to 150 °C / 48 hours. Performing the chemical speciation of organosulfur compounds (by gas chromatography coupled to mass spectrometry), were found 13 compounds in the Nynas oil and 9 compounds in the Petrobras oil. DBDS, which was found only in the Nynas oil, and it was the compound with the highest concentration. To perform the determination of the presence of DBDS in insulating mineral oil, a method by gas chromatography coupled to mass spectrometry was developed, and it was possible to quantify the amount of DBDS in insulating mineral oil samples derived from the power transformer. The passivation process by tolutriazol and benzotriazol, used as anticorrosive additives in the core of electrical equipament, was evaluated; after a while the effect of the addition of passivating agent becomes ineffective with time. The solution for the remotionl of DBDS from mineral oil was realized by using carbon nanotube reinforced by metallic matrix as agent to remove the DBDS. It was found that the adsorption agent was able to realize the complete DBDS remotion from insulating mineral oil up to a volume of 4000 mL (oil contaminated with DBD).Tese Acesso aberto (Open Access) Biocompósito a partir de PLA, Biovidro e Nanotubos de Carbono por Impressão 3D visando Regeneração Óssea(Universidade Federal do Pará, 2023-03-31) VASCONCELOS, Esleane Vilela; REIS, Marcos Allan Leite; http://lattes.cnpq.br/8252507933374637; https://orcid.org/0000-0003-2226-2653; CANDIDO, Verônica Scarpini; http://lattes.cnpq.br/8274665115727809; https://orcid.org/0000-0002-3926-0403Bone involvement promoted by aging and accidents has aroused interest in biomaterials and technologies for bone regeneration purposes. Thus, 3D printing technology gained prominence in the production of scaffolds due to its versatility in the production of complex geometries with interconnected pores. In this work, scaffolds composed of poly (lactic acid) (PLA), bioglass (BV) and carbon nanotubes (NTC) were produced by 3D printing, using hexagonal geometry, similar to honeycomb, interleaved. Poly (lactic acid) is a biopolymer already used in biomaterials, while bioglass has proven to be an excellent strategy for use in bone regeneration due to its excellent properties of biocompatibility, bioactivity and osteointegration, however they have low mechanical resistance and carbon nanotubes have shown excellent mechanical reinforcement in composite biomaterials. Thus, the main objective of this study was to produce and characterize a biocomposite of PLA, bioglass and carbon nanotubes by 3D printing and to study its chemical structure, crystallineity and morphology, using fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction and scanning electron microscope. The thermal stability of the composite was evaluated by thermogravimetry, mechanical properties by compression tests and cell viability was determined by the Alamar Blue test. The bioglass was synthesized by sol-gel method presenting bioactive phases of silicate. The scaffolds were produced by 3D printing with hexagonal structures in honeycomb in PLA, PLA/BV and PLA/NTC that were impregnated with bioglass on its surface. The results of the scaffolds demonstratedinterconnected and well-defined pores, ranging from 130 μm to 800 μm. Raman spectroscopy confirmed the interaction of BV in the polymer matrix through new peaks in the spectrum between 1400 and 2600 cm-1 and the presence of the D, G and 2D bands of NTC. In the compression assay, PLA scaffolds with 2 mm diameter showed higher compression stress of 14.88 ± 2.35 MPa, while PLA/NTC higher modulus of apparent compression, 0.58 ± 0.36 GPa. In cell viability, statistical tests showed that there was no significant difference between scaffolds with 2 and 4 mm diameter. The results reveal promising results for the use of 3D printed composites in bone repair sponges. Thus, we suggest the composite of PLA/NTC of 4mm impregnated with BV on the surface as the best bone substitute, however, the application in implants remains limited in relation to osteogenic integration.Tese Acesso aberto (Open Access) Desenvolvimento de ligas de alumínio nanoestruturadas para a utilização em cabos elétricos(Universidade Federal do Pará, 2023-03-15) PRAZERES, Emerson Rodrigues; SOUZA, José Antônio da Silva; http://lattes.cnpq.br/6157348947425968; BRAGA, Eduardo de Magalhães; http://lattes.cnpq.br/4783553888547500Aluminum nanocomposites demonstrate the ability to improve mechanical properties, thermal and electrical conductivity. For aluminum, the incorporation of multi-walled carbon nanotubes (NTCPM) using conventional melting methods is an old problem, due to disintegration of the walls of carbon nanotubes when subjected to high temperatures. In this study, aluminum nanocomposites were manufactured by the conventional casting method, using stainless steel powder (304LSS), nanostructured silicon and nickel. The carbon nanotubes were treated with hydrogen peroxide, allowing adhesion by polar interaction with the particles of the metallic powders. The nanostructured compounds were added to the aluminum matrix by means of conventional casting. After obtaining the material as a melt, it went through the machining process to a diameter of 18.5 mm and then through the cold working process until a diameter of 3.0 mm was obtained. The alloys were characterized mechanically through tensile and microhardness tests, electrically through electrical resistance tests, using a 2-point kelvin bridge, and structurally through macrostructure and microstructure analyses. The 304LSS powder added alloying elements, refined the grains and the NTC improved electrical conductor performance, with electrical conductivity gains in the range of 10%. Associates associated with carbon-associated components not linked to chains of protein chains are compounds of carbon, associated with proteins, aggregates, associated with carbon, associated with proteins, associated with significant proteins in the LRT. The alloys with Ni and carbon nanotubes contributed to significant gains in electrical conductivity and LRT, with the alloy with 2% nickel and 0.1% NTC showing gains of approximately 8% in electrical and mechanical properties. Nanostructured alloys were also superior in terms of electrical and mechanical properties than commercial alloys.Tese Acesso aberto (Open Access) Desevolvimento de dispositivos eletrônicos orgânicos nano e micro-estruturados: memória volátil, sesores e fotocélulas(Universidade Federal do Pará, 2011-02-14) REIS, Marcos Allan Leite dos; DEL NERO, Jordan; http://lattes.cnpq.br/5168545718455899In this work, several nano and microstructured organic devices were developed based on molecules of 4-dimethyl amino azobenzene-2-carboxylic acid (Methyl Red – VM), C60 Fullerene, nanocomposite of Aluminum/Carbon Nanotubes (Al/NC) and polymers: Poly(3, 4- dioxithiophene ethylene)-poly(sulfonate stireno) – PEDOT-PSS and poly(3-hexiltiofeno) – P3HT. These devices are volatile memory, fuel sensors, thermal-piezoresisitive sensor and photocells, which were manufactured by spin-coating, drop casting and chemical vapor deposition, resulting in devices with planar or layer by layer geometry. Morphological, optical, electrical and thermal characterizations were performed on devices, resulting: (a) volatile memory with a bit retention time of 4.5 s, the characteristic curves of current vs. voltage with peak-valley ratios of 8: under a 10:1 voltage positive and negative electrical energized with electrical conductivity of 10-4 S / m (OFF state) to 3.10 S / m (ON) at room temperature, (b) fuel sensors like chemiresistor sensors characteristics with sensitivity to ethanol and gasohol in concentrations of 26.25 ppm, (c) thermal-piezoresistive sensor with polynomial relationship between temperature and electrical resistance, linear relationship between pressure and electrical resistance, more accurate than a K type thermocouple when compared to a mercury thermometer at room temperature, (d) photocells with better performance when doped by Methyl Red showed quantum efficiencies up to 0.04%, real power at 0.27 and power conversion efficiency of 2.0%. These results indicate that electronic devices developed showed a better performance in comparison to similar organics.Tese Acesso aberto (Open Access) Eletrodeposição e caracterização de revestimento de cobre/nanotubos de carbono dopados com iodo em fios de alumínio liga 1350(Universidade Federal do Pará, 2023-09-19) RODRIGUES, Fabrício Augusto dos Santos; LEITE, Marcos Allan Reis; http://lattes.cnpq.br/8252507933374637Nanocomposites based on copper and carbon nanotubes (Cu/NTC) in metallic matrix have been providing improvements in the electrical and thermal properties of materials, presenting great potential for application in areas such as the electrical sector. Great challenges are encountered in the transmission and distribution of electrical energy, such as technical losses, mainly due to the Joule effect, resulting in low efficiency of conventional aluminum (Al) conductors. In this sense, new nanostructured conductors were developed based on functionalized copper/carbon nanotubes and doped with iodine (Cu/NTC-f), as a coating for Al 1350 aluminum wires, using the electrophoretic deposition process in copper sulfate solution, under electrical currents of 1.2 A, 1.5 A and 1.8 A, were investigated for their electrical and mechanical properties. Al@Cu/NTC-f conductors were characterized by scanning electron microscopy; X-ray diffraction; Raman spectroscopy; tensile test, in addition to electrical measurements, at room temperature and under heating, via Kelvin bridge. The results show an increase of approximately 18% of the IACS with good stability under heating compared to the commercial aluminum conductor Al 1350, due to the intrinsic properties of the NTCs, functionalization, good dispersion and the doping effect of iodine, confirmed by Raman spectroscopy with redshifts in the Gint and Gext subbands. The characteristic morphology of the thin films of Cu/NTC-f, presented pyramidal structures, agglomerates, copper structures involved the NTC, as well as NTC homogeneously electrodeposited in the aluminum substrate with good crystallinity, cultivated in the directions (311) and Cu (220), Cu (200), favoring the formation of thin films with good crystallinity. This method of electrodeposition of Cu/NTC-f on the surface of metallic wires shows promise for the production of nanostructured metallic conductors of high ampacity, thermal stability, low density and high performance, applied in electric power transmission lines.Dissertação Acesso aberto (Open Access) Eletrodeposição pulsada e caracterização de revestimentos de cobre/nanotubos de carbono em ligas de alumínio 3003 e 1350(Universidade Federal do Pará, 2025-06-25) SILVA, Alberto Solary da; SOUSA, Mário Edson Santos de; http://lattes.cnpq.br/4761512397509247; HTTPS://ORCID.ORG/0000-0002-7605-2371; REIS, Marcos Allan Leite dos; http://lattes.cnpq.br/8252507933374637; https://orcid.org/0000-0003-2226-2653The demand for more efficient and sustainable electrical systems has driven research toward innovative materials that enhance the properties of electrical conductors. Aluminum (Al) and its alloys are widely used in power transmission and distribution due to their low density and good electrical conductivity. The pursuit of improved electrical properties has led to the development of coatings that increase conductivity without compromising the lightweight nature of the material. This study presents an investigation into the anodization of Al substrates as a preparation step for nanostructured coatings, combined with pulsed current electrodeposition of a copper (Cu) and multi-walled carbon nanotube (MWCNT)-based nanocomposite, focusing on the correlation between electrical properties and microstructure. Experiments were conducted on Al 3003 alloy sheets, and on wires and cables made from Al 1350 alloy. Optimized anodization parameters were established using 100% H₂SO₄, direct current of 3 A, and 10 V applied for 2 hours. For the pulsed current electrodeposition, a concentration of 1 mg/mL of MWCNTs, an 80% duty cycle, 2 A, and 10 V were applied for 1 hour. Field Emission Gun Scanning Electron Microscopy (FEG-SEM) micrographs confirmed the formation of a uniform and porous aluminum oxide (Al₂O₃) layer, essential for coating adhesion, and revealed the homogeneous and effective distribution of the nanocomposite over the anodized surface. Energy Dispersive Spectroscopy (EDS) verified the presence of Cu and carbon (C) elements distributed throughout the coating layer. Raman spectroscopy identified characteristic vibrational modes of MWCNTs: D, G, and G′ bands, showing variations in intensity and bandwidth due to structural modifications induced by electrodeposition. X-ray Diffraction (XRD) analysis revealed the crystalline phases present in the coating and structural changes resulting from the surface treatment, confirming the integration of the nanocomposite into the metallic substrate. Electrical conductivity tests using the four-point Kelvin probe method, before and after coating, demonstrated a significant increase in electrical conductivity (σ), indicating improved charge transport efficiency due to the synergy between Cu and MWCNTs. Among the results, a ∼ 52.33% increase in surface electrical conductivity (σₛ) of the Al sheets and an increase in IACS from 67.76% to ∼ 73.5% in the coated wires stood out. Similarly, the average resistance of the coated cable decreased from 4.88×10⁻⁴ Ω to 1.934×10⁻⁴ Ω, a reduction of ∼ 60.37% compared to the uncoated cable. Statistical analyses supported these findings and confirmed their significance. Joule heat dissipation and ampacity calculations confirmed the superior performance of the coated material and its potential for application in power transmission and distribution systems. Therefore, the Cu-MWCNT nanocomposite coating obtained via pulsed current electrodeposition on anodized surfaces represents a promising approach for improving the electrical properties of Al-based conductors.Tese Acesso aberto (Open Access) Eletrônica molecular via método híbrido DFT/FGNE em anéis fenilas acoplados a eletrodos metálicos de nanotubos de carbono: a regra de conformação e quiralidade molecular(Universidade Federal do Pará, 2011-11-11) SILVA JÚNIOR, Carlos Alberto Brito da; DEL NERO, Jordan; http://lattes.cnpq.br/5168545718455899In this thesis, we investigate in detail the electronic transport properties, conformation and symmetry of zz9 SWCN structures attached to phenyl rings (2, 3, 4 and 5) under the influence of external electric field (voltage) via hybrid method DFT type B3LYP 6-311G (d, p) combined with NEGF and Group Theory. We found a good relationship between: 1 - the chiral index () by Group Theory and the law of cos2 (, dihedral angle) for the geometry under the influence of external electric field because only depends on the atomic positions () of conformations, and is also strongly correlated with current passing through the system; 2 - normalized conductance (G / Go) is proportional to cos2 in the region of the gap (EHOMO-ELUMO), ie, in regions where the resonance occurs negative differential resistance (NDR) and 3 - the Fowler-Northeim (FN) plot Vmin displays that occurs when the tail of a resonant transmission peak voltage enters the window, that is, when these structures is an NDR, NDR as the number of the IV plot is associated with the number Vmin of the FN plot and can be explained by the model of molecular transport line 4 - the barrier height (EF - EHOMO and ELUMO - EF) as a function of molecular length, 5 - Vmin as a function of barrier height (EF - EHOMO ) and the molecular length. Thus, one implies that the molecular conformation plays a major role in determining the transport properties of the junction, suggests that the second law of cos2 is a more general applicability regardless of the nature of the electrodes; 3 serves as a spectroscopic tool and also to identify the molecule at the junction, 4 and 5 as the molecular length reaches a certain value (1.3 nm) the Vmin remains virtually unchanged. The results showed that the structural properties (geometric) undergo significant changes with increasing external electric field that are in good agreement with the values found in literature. The behavior of I-V curves and G/Go-V lose their linear dependence to give rise to a nonlinear behavior with the appearance of NDR. This point reveals the structural modifications suffered by the system. The I-V plot confirmed the statements that were made through the structural analysis for the system considered and showed how it gives the load flow analysis systems.Tese Acesso aberto (Open Access) Um estudo sobre a influência de defeitos de diferente natureza nas propriedades eletrônicas de nanotubos usando o método das ondas cilindricas linearizadas aumentadas(Universidade Federal do Pará, 2014-12-12) GOMES, Fernando Antonio Pinheiro; PELAES, Evaldo Gonçalves; DMITRIEV, Victor Alexandrovich; http://lattes.cnpq.br/0684541646225359The carbon and boron nitride nanotubes are one-dimensional structures which exhibit behavior both as metallic and semiconductor, depending on their chirality, except for the nanotubes of boron nitride which always have semiconductor characteristics, for pristine nanotubes. Due to their electronic characteristics, the nanotubes have great potential for application in nanoelectronic devices, such as nanodiodes, nanotransistors, interconnection elements, etc. For this reason, it is important to understand how external factors influence on the properties of such materials. One such factor is the introduction of external defects in the nanotubes. Such defects are the absence of one or more carbon atoms belonging to carbon nanotube and nitrogen or boron for boron nitride nanotubes, or the substitution of carbon, nitrogen or boron atoms by different ones in the structure of the corresponding nanotubes. This work presents a theoretical study of the effects of the introduction of a substitutional defects in the electronic properties of carbon and boron nitride nanotubes, via ab-initio simulation. The energy band and density of states structures was evaluated for both semiconducting and metallic carbon nanotube armchair and zig-zag types respectively and for boron nitride nanotube only armchair type using the method LACW - linearized augmented cylindrical waves. Furthermore, due to the boron nitride nanotubes are growing in importance, we make an additional systematic study of the electronic structure for these nanotubes, for a super cell formed by three unit cells, using intrinsic doping as well as quantitative analysis about relative stability based on the total energy and band gap value of these structures.Tese Acesso aberto (Open Access) Influência da adição de nanotubos de carbono nas propriedades mecânicas da liga AL-2%NI solidificadas direcionalmente(Universidade Federal do Pará, 2015-11-27) NASCIMENTO, Luiz Gabriel da Silva; SÁ, Fernando Antônio de; http://lattes.cnpq.br/8275621144223544; SOUZA, José Antônio da Silva; http://lattes.cnpq.br/6157348947425968In this work, we produced a hypoeutectic Al-2wt%Ni matrix, to which we added various concentrations of carbon nanotubes, in order to evaluate the evolution of the mechanical strength of the new material. The manufacturing process occurred by melting and ascending unidirectional abrupt cooling, with extraction of the heat transient and determination of the thermal variables involved in the solidification. Scanning Electron Microscopy images show how the nanotubes are settled in the matrix, and by means of Raman Spectroscopy, we were able to determine the “D” and “G” bands and analyze the action of the process over them. By means of metallographic and mechanical tests, we were able to characterize the macro and micro-structural behaviors and the mechanical properties. The addition of small quantities of nanotubes led to a significant raise in the mechanical strength of the matrix.Tese Acesso aberto (Open Access) Interações com nanotubos de carbono e pontos quânticos de óxido de grafeno com estruturas externas do Sars-cov-2 via simulações de dinâmica e docagem molecular(Universidade Federal do Pará, 2023-06-02) LOBATO, Júlio César Mendes; OLIVEIRA, Mozaniel Santana de; http://lattes.cnpq.br/0810227136654245; https://orcid.org/0000-0002-4076-2443; CHAVES NETO, Antonio Maia de Jesus; Lattes: 3507474637884699The interaction between nanoparticles and SARS-CoV-2 virus proteins was evaluated using ligands such as single-walled carbon nanotubes (NTCPUs) and receptors including envelope protein (E-pro), major protease (M-pro) and Spike glycoprotein (Sgly). Molecular docking modeling and molecular dynamics techniques were applied. Molecular dynamics revealed root mean square shift of atomic positions ranging from 0.5Å to 3.0Å. The results indicated that the zigzag nanotube showed better affinity energy, with binding free energy values of -9.48, -9.98 and -10.08 kcal/mol for E-pro, M-pro and S-gly, respectively. Furthermore, the mean square deviation of the atomic positions remained more stable for this type of nanotube, indicating a high probability of binding to the active sites of the macromolecules. Molecular couplings and binding free energy showed strong interaction between NTCPUs and residues of the S-gly active site, with values of -112.73, -94.38 and -80.49 kcal/mol for zigzag, chiral and armchair ligands, respectively. In a second step, five graphene oxide (GO) quantum dots smaller than 20 nm were used as ligands, interacting only with the spike receptors of three different strains: S-GLY-OMICRON, S-GLY-KAPPA and S-GLY-DELTA. Comparing the two ligands, it was observed that the S-GLY-OMICRON/OG-E interaction showed better affinity with Gibbs free energy of 172.2510 KJ/mol, compared to the better affinity of carbon nanotubes, S-gly/zig-zag, with ΔG of -112.73 KJ/mol. The eight proposed ligands have a high probability of binding to the active sites of the macrostructures. In conclusion, both carbon nanotubes and OG showed promise for application in SARS-CoV-2 inhibitor products, such as the development of materials for the manufacture of personal protective equipment, sprays and waterproofing solutions in general.Tese Acesso aberto (Open Access) Manufatura aditiva de biocompósitos a partir de ácido poliláctico reforçado por hidroxiapatita e nanotubos de carbono para regeneração de tecido ósseo(Universidade Federal do Pará, 2024-01-22) BELO, Francilene da Luz; REIS, Marcos Allan Leite dos; http://lattes.cnpq.br/8252507933374637; CANDIDO, Verônica Scarpini; http://lattes.cnpq.br/8274665115727809Bone tissue is one of the most important tissues in the human body. Unfortunately, some traumatic events can cause fractures that can lead to temporary or permanent disability. Scaffolds are some of the materials that help in the treatment of these fractures, as they play an important role in the bone repair process and can be manufactured by 3D printing. Polylactic acid (PLA), as it is biodegradable, is one of the materials used in the production of scaffolds. Furthermore, the association of PLA and hydroxyapatite (HA) in its manufacture has shown excellent results, accelerating bone regeneration and reducing healing time. Another promising material for making scaffolds are carbon nanotubes (CNT), which have excellent mechanical properties and also accelerate bone growth. Thus, the main objective of this study was to produce scaffolds by additive manufacturing from polylactic acid (PLA) reinforced with hydroxyapatite (HA) and carbon nanotubes (CNT), to be applied in the regeneration of bone tissue and characterized through mechanical and biological. Hydroxyapatite was synthesized by wet means and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), presenting phases characteristic of HA, characteristic groups and a morphology with a porous surface with varying particle sizes, important characteristics for a biomaterial. The pure PLA, PLA/HA and PLA/NTC scaffolds were produced by additive manufacturing with an opening between the walls of 1 mm and 2 mm and characterized through mechanical tests and biological tests. Furthermore, PLA/NTC scaffold samples were impregnated with HA on the surface by thermal and chemical treatment to evaluate the influence of ceramics on the composite surface. The micrograph of the scaffolds showed that the addition of CNT made the PLA surface rougher compared to the sample containing HA; The TGA curves suggested that temperature may favor the thermal stability of PLA/NTC scaffolds impregnated with HA on the surface; Ramam showed an interaction between hydroxyapatite on the CNT surface and a possible structural transformation of PLA/CNT; In compression tests, PLA/NTC scaffolds with an opening between the walls of 1 mm showed better compression resistance; In cell viability assays, fibroblasts incubated with pure PLA, PLA/HA and PLA/NTC scaffolds showed high viability after evaluation by the MTT assay for the two forms of preparation (heat treatment impregnation and chemical treatment impregnation and for the two openings between the walls. More than 85% of the cells remained viable after 48h of incubation with all scaffolds tested, with the groups that had NTC in their composition showing the best results, both for heat treatment (more than 95% of cell viability) as well as chemical treatment (acetone). Given the results presented, it is concluded that PLA scaffold reinforced with HA and CNT may be promising as a biomaterial used to aid in the regeneration of bone tissue, contributing to the reduction of time hospitalization of patients suffering from bone fractures.Dissertação Acesso aberto (Open Access) Medidas de espectroscopia Raman em cristais KDP e Nanotubos de Carbono: implementação da técnica(Universidade Federal do Pará, 2008-08-29) FERREIRA, Marcel Luiz Rodrigues; REMÉDIOS, Cláudio Márcio Rocha; http://lattes.cnpq.br/7146076994037490; MOREIRA, Sanclayton Geraldo Carneiro; http://lattes.cnpq.br/7312223977002681Currently, physicist have developed new techniques for characterization materials, mainly in the field of new materials that are being produced from existing materials such as glass, ceramics, polymers, semiconductor and superconductor materials, magnetic materials, etc. In that line, the Group of Physic of materials of Amazon has acquired new techniques for material characterization and this work is the beginning of the implantation of Raman spectroscopy technique. In this work, we used sample of KH2PO4 crystals (KDP) and carbon single wall nanotube (SWNT). The KDP was chosen because their spectra are well-known and their preparation quite simple. The KDP pure or doped is still researched due have a ferroelectric transition and their several applications in laser, sensors, second and third harmonic generation. SWNT was used in this work because are materials of great scientific and technological interest with applications in nanotechnology such as transistor, diode. KDP samples were submitted uniaxial pressure and high temperatures to investigated possible phase transition. Both decomposition and phase transition was observed through Raman spectra of KDP. In the SWNT Raman spectra was identified well known D and G bands. The results support implantation of Raman spectroscopy in the Laboratory of spectroscopy of UFPA.Artigo de Periódico Acesso aberto (Open Access) Nanoelectronic Devices Based on Carbon Nanotubes(Universidade Federal do Pará, 2015-03) DMITRIEV, Victor Alexandrovich; GOMES, Fernando Antonio Pinheiro; NASCIMENTO, Clerisson Monte doCarbon nanotubes are possible building blocks in the development of new generation of electronic devices. The carbon nanotubes allow one fabrication of devices using nanometric scales. They can be used in projects of a wide range of electronic and optoelectronic components such as diodes, transistors and interconnection elements, among others. This paper presents the state-of-the-art of this area, emphasizing the influence of quantum effects on the characteristics of such components.Tese Acesso aberto (Open Access) Propriedades termodinâmicas: querosene, bioquerosene, aditivos e mecanismos de detecção de explosivos(Universidade Federal do Pará, 2018-11-23) MORAES, Edimilson dos Santos; CHAVES NETO, Antonio Maia de Jesus; http://lattes.cnpq.br/3507474637884699In this work we perform the characterization of thermodynamic potentials, obtaining predictions based on Density Functional Theory and statistical thermodynamics, through the canonical ensemble model. The study compared two theoretical methods, B3lyp/6-311 ++ g(d, p) and the semi-empirical method PM3, with the experimental values of the thermodynamic property of CP with the objective of validating the method with better precission. All simulations were performed conformation of the global minimums and optimizations of the molecules in thermal equilibrium and for a temperature range of 0.5 - 1500 K. We will analyze the thermal properties, such as energy, enthalpy, Gibbs free energy, entropy, heat capacity at constant pressure with respect to temperature. In the combustion enthalpy the following methods were used: B3lyp/6-311 ++ g(d, p), B3lyp/6- 31+g(d), CBS-QB3, G3, G4 and the G3 / G4 mean, obtaining results that show a good agreement with the experimental values, and verifying which of the methods best predicts the thermodynamic properties for reactions of combustion of the kerosene and bioquerosene. Also, a theoretical analysis was performed in DFT to calculate the thermodynamic properties of three molecules of additives. We simulated a composition of JP-8 with mixtures of the three additives together and separated in order to observe its efficiency over other existing methods. Then, the thermodynamic properties of the gasoline with additives were predicted under the same conditions already described. These calculated amounts included standard gasoline mixed with the following oxygenated additives: methyl tert-butyl ether, ethyl tert-butyl ether, diisopropyl ether, ethanol and methanol. It is possible to estimate some relevant fuel properties in the injection and combustion stage, showing substantial agreement with the experimental data, presenting relative errors of less than 2%, thus establishing an excellent method to calculate and predict the thermodynamic properties of the combustion reactions for with additives. In the last stage of this work, we present a theory of a simulated sensor device to identify explosive molecules that is of extreme interest for the area of public security in the fight against terrorism. For this, an armchair-type carbon nanotube (CNT) was modeled under the action of an external, longitudinal and uniform electric field, causing the molecules of the explosives: 2,4,6 trinitrotoluenes, triacetin triperoxide, hexogen, hexamethylene triperoxide diamine, octogen and pentaerythritol tetranitrate. Turn around the CNT, behaving as a sensor depending on the temperature and the radius of rotation of the molecules. In this way, we study the physico-chemical properties of the interactions of the molecules with the CNT.Tese Acesso aberto (Open Access) Reforço superficial em alumínio fundido por nanotubos de carbono via tratamento de solubilização(Universidade Federal do Pará, 2021-10-14) BRITO, Paulo Roberto de Oliveira; REIS, Marcos Allan Leite dos; http://lattes.cnpq.br/8252507933374637Carbon nanotubes (CNTs) are noteworthy, as they reinforce the metallic matrix, due to mechanical properties, such as the ~ 1.0 TPa Young module. To improve the maintenance of the commercially pure aluminum surface, multi-walled carbon nanotubes (MWCNTs) were incorporated into the aluminum surface with heat treatment by solid solubilization, in order to improve the surface properties of aluminum. The aluminum samples were subjected to chemically attacked with the Keller reagent, for a period of 30, 60 and 120 seconds, and soon after the roughness assessment was carried out, and then they were placed in a container containing NTCs, being subjected to a 640°C for one hour. Afterwards, the morphology was evaluated in the scanning electron microscope, where an aggregate of NTCs was observed, the DRX was performed to evaluate the addition of the NTCs in the matrix, and the Raman Spectrum that evaluated the charge transfer to the matrix. Microhardness was performed to evaluate the result of the incorporation of the NTCs in the matrix. The results obtained show that the incorporation of CNTs in the aluminum matrix increases the hardness in approximately 20% of the surface, in comparison with the control sample. The process of incorporating CNTs into the aluminum matrix by solubilization is a promising, simple and inexpensive alternative to improve the durability of the aluminum surface.Tese Acesso aberto (Open Access) Sensores de narcóticos, gás natural e syngás utilizando nanotubos de carbono sob ação de campo elétrico externo(Universidade Federal do Pará, 2021-02-15) AIRES, Júlio Cesar Nunes; CHAVES NETO, Antonio Maia de Jesus; http://lattes.cnpq.br/3507474637884699; https://orcid.org/0000-0002-9730-3512This work presents an analysis of the molecular dynamics between several illicit drugs: benzoylmethylecgonine, diacetylmorphine, 3,4 methylenedioxymethamphetamine, D-Deoxefedrine, lysergic acid diethylamide and, interacting with a section of carbon nanotubes at low initial temperature, corresponding to 10-3 K, and under a uniform electric field, like a drug detection system. In addition to the analysis of the behavior of natural gas molecules and SYNGAS interacting with a carbon nanotube at an initial simulation temperature of 300K, with all systems being relaxed by 50 ps outside the carbon nanotube, describing each possible arrangement for capture; a constant external electric field was then applied to the systems, longitudinally, along the length of the carbon nanotube, promoting an evanescent effect, capable of trapping them orbiting the carbon nanotube. Simulations for electric field intensities within a range of 10-5 to 10-1 a.u. were performed, to verify the behavior of drugs, while for the molecules that comprise Natural Gas and SYNGAS, a range of 10-8 to 10-1 a.u. was adopted. Average orbital radii were estimated, in addition to a number of thermodynamic properties. Our results indicate that the combination of a uniform external electric field and van der Waals interactions in a carbon-derived nanotube is enough to create an evanescent field of attractive potential, modeling it as a system for the detection of temperature and drug rays .
