Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Neoplasias cerebrais"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Análises moleculares da região controle do DNA mitocondrial de astrocitomas na população paraense
    (Universidade Federal do Pará, 2012-06-06) COSTA JÚNIOR, Carlos Antonio da; ANSELMO, Nilson Praia; http://lattes.cnpq.br/6518287721873199
    The central nervous system cancer represents 2% of all malignancies in the world population and 23% of cases of childhood cancer. In Brazil, an estimated 4,820 cases of cancer in men and women in 4450 to the year 2012. Gliomas are tumors of the central nervous system formed from glial cells, making up over 70% of brain tumors. The most important property of gliomas is the ability of immune evasion. Age, ethnicity, gender and occupation may be considered risk factors for the development of gliomas, and are twice as common in African-Americans. The astrocytoma is the most common glial tumor, constituting about 75% of cases of gliomas. These tumors are classified into four levels according to the World Health Organization. Mitochondrial DNA is related to the development and progression of various types of tumors. Mitochondrion is responsible for cellular energy balance and is involved in triggering apoptosis responding to oxidative stress. Mutations in DLOOP can change DNA replication rates and increase the developing cancer risk. We analyzed 29 samples astrocytoma classified according to the WHO. Our data suggest that low-grade astrocytomas may be related to genetic inheritance, making some patients with specific mutations or polymorphisms more susceptible to the risk of developing the disease, and high grade may be related to prolonged exposure to carcinogenics. Polymorphisms and mutations have been identified which correlate with some risk of developing astrocytomas and disease progression. The insertion of two or more nucleotides at microsatellite regions may cause instability and contribute to the cancer onset. Deletion at the site 16132 may be a high-grade astrocytoma marker, as well as insertion of two or more cytosines to the site 16190 can be an astrocytoma specific marker. Heteroplasmy may be decisive for the emergence and / or progression of high-grade astrocytomas.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA