Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Photonic crystals"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 3 de 3
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Análise comparativa das propriedades ressonantes de nanopartículas e de nanoantenas bowtie de ouro de diferentes geometrias
    (Universidade Federal do Pará, 2012-12-14) SANTOS, Thaís Lira Tavares dos; COSTA, Karlo Queiroz da; http://lattes.cnpq.br/7932708321834647; DMITRIEV, Victor Alexandrovich; http://lattes.cnpq.br/3139536479960191
    This work presents a comparative analysis of the resonant properties of gold nanoparticles and gold bowtie nanoantennas with new triangular geometries. The proposed geometries are as follows: the curved side triangular ones and the triangular geometries with one corner formed by three tips. The investigated properties are the resonant responses, the spatial distributions of the electric near-field and the resonant wavelengths. The current density inside the nanostructures is also analysed for better understanding of the electric near-field enhancement. For the case of bowtie nanoantennas, the research is also focused on the study of the influence of a silicon dioxide substrate on their resonant properties and on the study of their characteristics in the far-field region (scattering cross section and radiation pattern). The numerical results are obtained in the visible and near infrared regions of the electromagnetic spectrum, simulated by the finite integration technique. For isolated nanoparticles, these results show that the suggested geometries have electric near-field intensity around 160% higher and resonant wavelength redshifted by 15%, as compared to the equilateral triangular geometry. In the case of bowtie nanoantennas, the new geometries have electric near-field intensity 90% higher and resonant wavelength blueshifted by 15%, as compared to the triangular equilateral bowtie nanoantenna. The results of this work can serve for modeling, fabrication and designing of gold nanoparticles and gold bowtie nanoantennas for different applications, for example, microscopy and optical fibre sensors.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Dispositivos de controle não recíprocos baseados em cristais fotônicos para utilização na faixa de frequências óptica
    (Universidade Federal do Pará, 2015-09-11) PORTELA, Gianni Masaki Tanaka; DMITRIEV, Victor Alexandrovich; http://lattes.cnpq.br/0684541646225359
    The study of the photonic crystals technology is being performed by many research groups, mostly because of their many practical applications. Photonic crystal structures are comprised by materials with different refractive indexes, periodically arranged in one, two or three dimensions. They can be employed in the construction of passive photonic devices, for use in optical systems. Photonic crystal based devices have reduced dimensions when compared to the traditionally employed ones, favoring an increase on the component integration density in optical systems. On the basis of studies related to the symmetry groups of several geometrical configurations of photonic crystals and by performing many computational simulations, eight unprecedented passive devices were developed, with new operating principles. Five switches, one circulator, one nonreciprocal power divider and one multifunctional device were designed, on the basis of photonic crystals technology. The designed devices can be used, for example, in the next generation optical computers, as well as in optical communication systems.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Estruturas photonic band gap em antena de microfita com aplicações em microondas e terahertz
    (Universidade Federal do Pará, 2019-08-16) OLIVEIRA, Jorge Everaldo de; COSTA, Marcos Benedito Caldas; http://lattes.cnpq.br/7636226766852440
    In this work we are analyzing the simulations of two microstrip antennas. The first is an antenna using the ceramic material Bismuth Niobate (BiNbO4) doped with Vanadium Pentoxide (V2O5) on the substrate. The antenna patch was designed with indented power line to facilitate matching of impedances and the substrate with air holes was placed just below the patch to further decrease the losses. The second is a nano-antenne with Graphene Patch in the Terahertz range and PBG (Photonic Band Gap) substrate with triangular mesh, and holes in the following height configurations h1, h2 and h3. At time h1 the substrate is fully drilled, while at heights h2 the holes will be made top to bottom of the substrate and the height h3 is the antenna with substrate drilled from the bottom up to the middle of the substrate. Therefore three antennas are created in these geometries using a triangular hole network. The arrangement of the holes in the dielectric substrate constitute the PBG structure, to increase the performance and efficiency of these antennas, extinguishing surface waves in the substrate of microstrip antennas. The adopted geometry also improves antenna parameters such as efficiency and bandwidth. The commercial software HFSS and CST were used for the simulations of the antennas. After the numerical simulation steps the results of the parameters of these devices were obtained. The first antenna (periodic lattice with ceramic substrate) obtained a return loss of -36.21 dB, at a resonance frequency of 10,26 GHz, with a bandwidth of 2.18 GHz. In the simulations of the antennas of microstrip with Patch of graphene the antenna h3 obtained double transmission band with chemical potential of graphene of 0,3 eV.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA