Navegando por Assunto "Processamento paralelo visual"
Agora exibindo 1 - 4 de 4
- Resultados por página
- Opções de Ordenação
Artigo de Periódico Acesso aberto (Open Access) Division of labor between M and P visual pathways: different visual pathways minimize joint entropy differently(2008-06) SILVEIRA, Luiz Carlos de Lima; SAITO, Cézar Akiyoshi; MELLO JÚNIOR, Harold Dias de; SILVEIRA, Vladímir de Aquino; SOUZA, Givago da Silva; RODRIGUES, Anderson Raiol; SILVA FILHO, Manoel daVisual perception and action are strongly linked with parallel processing channels connecting the retina, the lateral geniculate nucleus, and the input layers of the primary visual cortex. Achromatic vision is provided by at least two of such channels formed by the M and P neurons. These cell pathways are similarly organized in primates having different lifestyles, including species that are diurnal, nocturnal, and which exhibit a variety of color vision phenotypes. We describe the M and P cell properties by 3D Gábor functions and their 3D Fourier transform. The M and P cells occupy different loci in the Gábor information diagram or Fourier Space. This separation allows the M and P pathways to transmit visual signals with distinct 6D joint entropy for space, spatial frequency, time, and temporal frequency. By combining the M and P impacts on the cortical neurons beyond V1 input layers, the cortical pathways are able to process aspects of visual stimuli with a better precision than it would be possible using the M or P pathway alone. This performance fulfils the requirements of different behavioral tasks.Dissertação Acesso aberto (Open Access) Ganho de contraste do potencial cortical provocado visual multifocal: efeitos da excentricidade e do modo de estimulação(Universidade Federal do Pará, 2016-11-29) SILVA, Veronica Gabriela Ribeiro da; SOUZA, Givago da Silva; http://lattes.cnpq.br/5705421011644718This study evaluated effects of eccentricity and mode presentation on the multifocal visual evoked potential (mfVEPS) recordings extracted by second-order kernels and its possible contributions from parallel visual pathways. Nine subjects (22.5 ± 3.7 years-old) were studied. All the subjects had 20/20 or corrected visual acuity and no previous history of neuro-ophtahlmic diseases or degenerative diseases. The subjects were tested with non dilated pupil in a monocular way. All the experimental procedures agreed to the tenets of Helsinki and were approved by Committee for Ethic in Research of Nucleus of Tropical Medicine (023/2011 protocol, Federal University of Pará, Belém, PA, Brazil). A CRT monitor displayed a 22º radius, 60 sectors dartboard, each sector with 16 checks (8 white and 8 black), pattern mean luminance of 40 cd/m2. The pattern selection to be shown in each sector was temporally modulated according to a binary pseudorandom m-sequence. Two stimulation protocols were used and we called them as pattern reversal and pattern pulse. Stimulus was presented at five Michelson contrast levels (100%, 50%, 25%, 12.5%, and 6.25%) in two trials with increasing and decreasing contrast order. The subject was instructed to keep the eye in a red cross (1º) placed at the center of the screen. Veris 6.01 was used to configure the stimuli. mfVEPs were recorded with gold cup electrodes: the reference electrode was placed at the inion; the recording electrodes were placed at, 4 cm above the inion (channel 1), 1 cm above and 4 cm to the right of the inion (channel 2), 1 cm above and 4 cm to the left of the inion (channel 3). Ground surface electrode was placed at the forehead. Skin impedance was kept below 5 KOhm. Recordings were amplified 100.000x, band-pass filtered between 3 and 100 Hz. The Veris 6.1 performed an offline low-pass filtering at 35 Hz. Veris 6.1 was used to extract first (K2.1) and second (K2.2) slices from second-order kernels data from original channels. Using MATLAB routines three additional channels were computed from the subtraction of the three original channels. For each subject, a signal-to-noise ratio (SNR) evaluation was performed over the averaged data of two trials in each one of the 6 channels. We measured the RMS amplitude of signal and noise interval of each recording. Finally, we analyzed the waveforms with best SNR for each sector. Mean RMS amplitude for each of six eccentric rings (R1 and R6 are the inner and outer rings, respectively) and for all rings together as a function of stimulus contrast was modeled using Michaelis-Menten functions. Semi-saturation constant (C50) of the contrast-response function was used as indicator of response contrast gain. For pattern reversal protocol contrast-response functions from K2.1/K2.2 had the following C50 values: R1: 35,5% ± 9,3; R2: 26,5% ± 6,5; R3: 22,4% ± 8,8; R4: 18,4% ± 4,4; R5: 20,6% ± 9,3; R6: 26,7% ± 12 / R1: 38,4% ± 4,2; R2: 27,4% ± 7,4; R3: 20,2% ± 4,9; R4: 22,4% ± 4,2; R5: 18,7% ± 3,2; R6: 23,1% ± 8,9. For pattern pulse protocol contrast-response functions from K2.1/K2.2 had the following C50 values: R1: 0; R2: 44,7% ± 10,5; R3: 38,3% ± 12,1; R4: 45,8% ± 12,1; R5: 49,4% ± 16,1; R6: 47,8% ± 14,7 / R1: 0; R2: 50,2% ± 10,3; R3: 48,2% ± 11,1; R4: 28,5% ± 4,2; R5: 54,3% ± 16,2; R6: 0. Two contrast sensitivity mechanisms contribute to mfVEPs elicited by stimuli located in the central visual field, one mechanism with higher contrast gain (pattern reversal mfVEP) and other mechanism with low contrast gain (pattern pulse). For stimulus at the periphery visual field, mechanism with high contrast gain contributed to the generation of mfVEPs elicited by all stimulation modes.Tese Acesso aberto (Open Access) Propriedades espaciais das respostas isoladas de cones L e M ao eletrorretinograma: implicações sobre a atividade das vias visuais paralelas(Universidade Federal do Pará, 2015-06-16) JACOB, Mellina Monteiro; SOUZA, Givago da Silva; http://lattes.cnpq.br/5705421011644718; GOMES, Bruno Duarte; http://lattes.cnpq.br/4932238030330851We studied the spatial arrangement of L- and M-cone driven electroretinograms (ERGs) reflecting the activity of magno- and parvocellular pathways. L- and M-cone isolating sine wave stimuli were created with a four primary LED stimulator using triple silent substitution paradigms. Temporal frequencies were 8 and 12 Hz, to reflect cone opponent activity, and 30, 36 and 48 Hz to reflect luminance activity. The responses were measured for full-field stimuli and for different circular and annular stimuli. The ERG data confirm the presence of two different mechanisms at intermediate and high temporal frequencies. The responses measured at high temporal frequencies strongly depended upon spatial stimulus configuration. In the full-field conditions, the L-cone driven responses were substantially larger than the full-field M-cone driven responses and also than the L-cone driven responses with smaller stimuli. The M-cone driven responses at full-field and with 70° diameter stimuli displayed similar amplitudes. The L- and M-cone driven responses measured at 8 and 12 Hz were of similar amplitude and approximately in counter-phase. The amplitudes were constant for most stimulus configurations. The results indicate that, when the ERG reflects luminance activity, it is positively correlated with stimulus size. Beyond 35° retinal eccentricity, the retina mainly contains L-cones. Small stimuli are sufficient to obtain maximal ERGs at low temporal frequencies where the ERGs are also sensitive to cone-opponent processing.Artigo de Periódico Acesso aberto (Open Access) A visão através dos contrastes(2013) SOUZA, Givago da Silva; LACERDA, Eliza Maria da Costa Brito; SILVEIRA, Vladímir de Aquino; ARAÚJO, Carolina dos Santos; SILVEIRA, Luiz Carlos de LimaThe first step in the information processing of visual stimuli corresponds to foton counting by photorreceptor cells. In the post-receptoral steps, information on the stimulus absolute intensity is converted in comparisons between information coming from adjacent retinal areas or successive moments. This metrics implemented by the visual system to quantify the stimulus is called contrast - spatial or simultaneous contrast and temporal or successive contrast. Contrast is essential to the generation of conscious visual perception in the domain of space and time and in three orthogonal color dimensions - black and white, blue and yellow, and green and red. A Bell-shaped curve delimits the thresholds of contrast detection as a function of spatial or temporal frequency. It is called contrast sensitivity function and is affected by several optical and neural factors. Different classes of neurons contribute to different regions of the contrast sensitivity function and their activities represent the work of visual processing pathways that begin in the retina and end in the visual cortex. Basic and clinical investigations have given support to the importance of the study of luminance (black and white) spatial contrast sensitivity as a tool to evaluate the visual function in normal and subjects affected by neuro-ophthalmologic dysfunctions.
