Navegando por Assunto "Proporcional-Integral-Derivativo (PID)"
Agora exibindo 1 - 1 de 1
- Resultados por página
- Opções de Ordenação
Dissertação Acesso aberto (Open Access) Metaheurísticas populacionais: estudo comparativo na sintonia de parâmetros de controladores clássicos(Universidade Federal do Pará, 2016-12-02) VIDAL, Juan Ferreira; CASTRO, Adriana Rosa Garcez; http://lattes.cnpq.br/5273686389382860As metaheurísticas populacionais são técnicas pertencentes ao campo da Inteligência Computacional baseadas em modelos naturais e surgiram como alternativas para resolver problemas de otimização, onde as técnicas tradicionais não podem ser aplicadas, ou ainda onde não se dispõe de um modelo de solução para o problema, fazendo com que a solução seja encontrada por intermédio de meios empíricos. Diante da capacidade de oferecer soluções aceitáveis, em um tempo hábil, para muitos dos problemas complexos encontrados, as metaheurísticas populacionais vêm sendo aplicadas com êxito diferentes problemas de sistemas de controle encontrados na literatura. Este trabalho apresenta, de um modo geral, como as metaheurísticas vêm sendo aplicadas na solução de problemas de controle e realiza um estudo comparativo de desempenho entre quatro algoritmos bioinspirados na sintonia dos parâmetros de um controlador Proporcional-Integral-Derivativo (PID). Foram utilizados os seguintes algoritmos: Algoritmo Genético (AG), Algoritmo genético no Modelo de Ilhas (AGMI), Bacterial Foraging Optimization (BFO) e o Particle Swarm Optimization (PSO). Os resultados demonstram que os algoritmos apresentam um ótimo desempenho para a sintonia do PID, produzindo resposta que atendem as exigências de projetos. Foram utilizados diferentes sistemas com características distintas para avaliar os algoritmos. Considerando os resultados obtidos, o PSO se mostrou como o melhor algoritmo entre os quatros usados, produzindo resposta em um tempo mais rápido e apresentando menor desvio padrão nos ensaios realizados.
