Navegando por Assunto "Quartzo"
Agora exibindo 1 - 9 de 9
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Desenvolvimento de uma metodologia para análise química de inclusões silicáticas em cristais de quartzo: estudo de caso em granitos estaníferos da Mina Pitinga (AM)(Universidade Federal do Pará, 2021-05-02) SANTOS, Gabrielle Cristine Silva dos; BORGES, Régis Munhoz Krás; http://lattes.cnpq.br/4220176741850416; https://orcid.org/0000-0002-0403-0974Silicate inclusions (melt inclusions) are small globules of silicate melt, containing some combinations of crystals, glass and vapor, entrapped in different minerals during their growth, and can be found in volcanic and plutonic rocks. They are easily identified in volcanic rocks. On the other hand, one of the major difficulties in the study of melt inclusions in plutonic rocks is their identification, because, after being trapped, their evolution results in total or partial crystallization. Based on international literature, they provide important information about the origin, nature of magmas and their petrological evolution. In addition¸ the detection of metals in melt inclusions is a unequivocal geological evidence of the genetic association of these elements with magmatic liquids (source) and is crucial in the study of orthomagmatic or hydrothermal deposits. The techniques for studying silicate inclusions for petrological and metallogenic purposes have evolved very rapidly in the last four decades, but it is a methodology that has not yet been implemented in Brazil, both due to the absence of laboratories with adequate equipment and the inexistence of research groups engaged in this field. Recently, pioneering studies were developed at the CDTN (Centro de Desenvolvimento da Tecnologia Nuclear), in Belo Horizonte (MG), with the tin granites of the Pitinga mine (AM), through high temperature microthermometric experiments and analysis of trace elements by LA-ICP-MS, in silicate inclusions hosted in quartz crystals of these granites. However, the tests were carried out on doubly-polished sections, which made it difficult to perform chemical analyzes of major elements by electron microprobe, since the inclusions were very deep in the quartz crystals, and any attempt at polishing to expose the inclusions would damage the samples. Based on this preliminary experience, this specific work is a technique for preparing quartz crystal concentrates containing silicate inclusions, using as such tin granites from the Pitinga mine (AM), representatives of the later facies of the Madeira pluton, porphyritic hypersolvus alkali feldspar granite and albite-rich granite. Thus, the developed work at the Laboratório de Inclusões Fluidas, with the crucial support of the Oficina de Laminação, the Laboratório de Análises Químicas and the Laboratório de Microanálises of the Instituto de Geociências of the Universidade Federal do Pará (UFPA), allowed the research to establish a routine involving the following steps: detailed petrography; crushing and grinding of the samples; granulometric separation; preparation of quartz crystal concentrates; muffle furnace heating and cooling experiments; selection of crystals with appropriate inclusions; assembly of the crystals in mounts with epoxy resin and subsequent polishing; monitoring and imaging of inclusions through the SEM; particle analyzes by EDS and, finally, analysis of major element (WDS) by electron microprobe. The microanalytical data (major elements) chosen especially in those silicate inclusions containing two or more solid phases (glass, spherical globules), demonstrated that the preparation technique provided a good exposure of the inclusions. In this way, the methodology developed in this work is relevant to the study of silicate inclusions and can be applied for the preparation of concentrates of any transparent magmatic mineral (quartz, olivine, pyroxene, plagioclase, etc.), host of silicate inclusions, and that can be analyzed by any of the traditional microanalytical techniques (electron microprobe, LA-ICP-MS, Raman spectroscopy, SEM, etc.).Item Acesso aberto (Open Access) Evolução magmático-hidrotermal do granito mocambo, Província Estanífera do Sul do Pará: um estudo morfológico e composicional de quartzo e cassiterita(Universidade Federal do Pará, 2018-10-02) BARROS NETO, Rubem Santa Brígida; LAMARÃO, Claudio Nery; http://lattes.cnpq.br/6973820663339281The present research deals with the morphological, compositional and textural aspects of quartz and cassiterite crystals of the Mocambo Granite (MG) and of associated greisens bodies, belonging to the Velho Guilherme Intrusive Suite, Carajás Province, and its relation with the tin mineralization. The study was performed with the aid of scanning electron microscope (SEM), using catodoluminescence (CL) images, semiquantitative analyzes by energy dispersive spectroscopy (EDS) and by electronic microprobe (EM) analyzes. Different facies and greisenized rocks of the MG were studied and it was possible to identify five types of quartz, called Qz1, Qz2, Qz3, Qz4 and Qz5. The Qz1, considered the most earlier type and of magmatic origin, can be found in all facies, being less frequent in the greisens. It appears as anhedral phenocrysts to luminescent sub-rounded (light gray), with varying degree of fracturing, as well as fine-to medium-grained crystals dispersed in the groundmass. Luminescent nuclei with alternating or reasorbed alternating light-dark zonations are common. Qz2 is posterior to Qz1 and not luminescent (dark gray); is present in all facies, but is rare in the greisen. It usually occurs as irregular discontinuous stains or filling fractures and shafts that section the Qz1, suggesting a process of intense replacement. The Qz3 does not show luminescence. It occurs in almost all facies filling a fracture that cuts Qz1 and Qz2. The Qz4 is present in the most evolved and intensely altered rocks, in the greisen and in veins or interstitial cavities, usully associated with cassiterite crystals. It is represented by euhedral, medium-greined, slightly fractured crystals, with well-defined light-dark zoning and variable thickness. Qz5 occurs sectioning and forming irregular spots on Qz4, being associated generally with wolframite or wolframite + cassiterite in quartz veins. They are slightly fractured, luminescent, meduium-to-coarse greined anhedral crystals. Qz1 and Qz2 from porphyritic syenogranite to monzogranite facies show high Ti concentration (9.5 - 104 ppm) and low Al (10 - 149 ppm). Qz1, Qz2 and Qz3 crystals from the aplitic alkali-feldspar granite facies presented slightly lower Ti contents (5 - 87 ppm) in comparison to SGMP quartz values and Al values that reach 2065 ppm. In the Qz1, Qz2 and Qz3 of the greisenized rocks, the Ti presented lower contents (0.0 and 62 ppm) and variable Al content (0 - 167 ppm). In the Qz4 crystals of the mineralized greisenized rocks in cassiterite, the Ti did not exceed 20 ppm, while Al presented strong enrichment, exceeding 3000 ppm. In the mineralized quartz veins in wolframite or wolframite + cassiterite, consisting mainly of Qz5, the Ti and Al concentrations presented generally low values, with maximum contents of 7 and 77 ppm, respectively. The cassiterite is occur as anhedral to subhedral fine-to coarse-grained crystals, anhedral to subhedral, associated to chlorite, muscovite, fengite and siderophyllite in gresenizeds rocks or commonly included in wolframite crystals in quatz veins. Shows light brown to reddish color and high colors of interference. More developed crystals show concentric zoning. Analyzes carried throug ME showed that in addition to Sn, cassiterites have lower concentrations of Fe, Ti, W, Nb and Mn traces. The concentrations of Fe, Nb, Ti and W are higher in the darker spots, while Sn shows higher purity in the lighter parts of the crystals. Cassiterites associated with Qz5 (hydrothermal) are often included in wolframite crystals or are partially substituted by it. This study showed that quartz was an excellent marker of the magmatic evolution and late alteration resulting from hydrothermal processes that operated in the Mocambo granite. It was possible to distinguish one magmatic and four hydrothermal types of quartz. The CL images indicate that the tin mineralization is present in the most evolved rocks and hydrothermally altered as in greisenized rocks and quartz veins, where the cassiterite is associated with Qz4 or Qz5 + wolframite. Qz5 suggests a possible mineralizing hydrothermal event of wolframite, subsequent to the origin of the cassiterite associated with Qz4.Item Acesso aberto (Open Access) Inclusões fluidas crepitadas, fluidos hipersalinos e aquo-carbônicos em quartzo associado a rochas micáceas no Granito Xinguara - Terreno Granito-Greenstone de Rio Maria, PA(2008-03) WEBER, Marcelo Leopoldo; RONCHI, Luiz Henrique; ALTHOFF, Fernando Jacques; LEITE, Albano Antônio da Silva; DALL'AGNOL, Roberto; FUZIKAWA, KazuoThe micaceous rocks occurring in the Xinguara Granite, Rio Maria Granite-Greenstone terrain, Pará State, Brazil, are composed of muscovite and chlorite with quartz levels intercalated forming a well developed schistosity. This schistosity is cut by quartz veins. Both quartz generations show the same aqueous, aqueous-carbonic and halite-bearing fluid inclusions either in secondary inclusions halos and trails surrounding decrepitated primary fluid inclusions or in transgranular secondary trails. A wide variation of homogenization temperatures, high salinity, necking down and the decrepitated inclusions existence indicates strong influence of post-formational alteration and reequilibration linked to the granite intrusion. These foliated rocks are metasedimentary enclaves affected by late hypersaline aqueous-carbonic granitic fluids.Item Acesso aberto (Open Access) Mineralizações de caráter gemológico (opala, ametista, quartzo tricolor, quartzo rutilado e com clorita) da região de São Geraldo do Araguaia (PA) - Xambioá (TO): caracterização e gênese(Universidade Federal do Pará, 1999-06-16) COLLYER, Taylor Araújo; KOTSCHOUBEY, Basile; http://lattes.cnpq.br/0096549701457340In the Xambioá-São Geraldo do Araguaia region, located in the northern segment of the Araguaia belt, pegmatitic and hydrothermal quartz veins with opal, amethyst, three colored quartz, and with rutile and chlorite occur. The genesis of these veins has been investigated due to their gemmological interest. The most important opal — bearing quartz vein is hosted by metasedimentary rocks of the Xambioá Formation, and presents a rough zoning in addition to a brecciated texture. The outer zone of the vein consists of milky quartz, while the inner zone is composed of onyx, jasper opal (C-T) cut by small veins of C-T opa! and A opal. High salinity fluids of H2O-0O2-NaCl and H20-KCl-NaCl systems (> 26 wt% of NaCl equiv.) have been found in the outer zone quartz, while in the intermediate zone low salinity fluids of the system H20-FeCl2-NaCl (0,88 to 3,71 wt% o NaCl equiv.) were observed. Th ranges from 232 to 310°C and from 110 to 145°C for the quartz of the outer and intermediate portions, respectively. These data, along with the opal metastability suggest that the quartz of the outer zone may be related to the regional metamorphism of Brasiliano age that affected the Araguaia belt. They also suggest a contribution of meteoric water to the formation to both the jasper opal and the C-T opal, as well as a supergenic origin to the A opal. The inner portions of these veins may have been formed by the reactivation of older fractures during the Paleozoic and/or Mesozoic. The vein with amethyst in emplaced into the granitoid body of Serra da Ametista. It is pegmatitic in nature and is composed of quartz, amethyst, microcline, oligoclase, muscovite, and biotite. Fluids of the system F120- KC1-NaCl are found in both quartz and amethyst. In quartz, the salinity of these fluids ranges from 18,95 to 20,75 wt°/.9 of NaCl equiv., and in amethyst from 12,73 to 18,00 wt% NaCl equiv. Th ranges from 190 to 248,5°C in quartz, and from 155 to 200°C in amethyst. These fluids might have had a magmatic origin and be related to the late cooling phase of the Serra da Ametista granitic body. Rb-Sr ages in pairs of minerais (muscovite-microchne and muscovite-oligoclase) range between 390 and 430 Ma. These ages are younger than the probable Brasiliano age of the vein and suggest a partial resetting of the Rb-Sr system due to subsequent tectonic reactivations. The three colored quartz occurs as zoned crystals in the inner parts of quartz veins emplaced into metarkoses and metasandstones of the Pequizeiro Formation. Inclusivas ofred rutile,pyrite and melanterite in the upper parts of the quartz crystals give them the light red to yellowish brown color. In the lower portion, the purple-yellow dual coloration is given by the presence of iron, aluminum, potassium and sodium. In the outer portion of the studied veie, the quartz presents high salinity fluids of the system H20-CaC12-NaCl (20,60 to higher than 23,18 wt°/0 of NaCl), and Th ranging from 488 to 492°C. Fluids of the systems H20- CaC12-NaCl and H20-FeC12-NaCl were identified in the lower portion of the three colored quartz crystals, and of the system H20-FeCl2-NaCl in the upper portions. The salinity of the fluids in the lower portions ranges from 13,83 to 17,34 and from 17,96 to higher than 23,18 wt% of NaCl, respectively. In the upper portions of the crystals, the salinity decreases. Th, which is higher than 485°C in the lower portions decreases to values between 272 and 305°C in the upper portions. A MEV study in the three colored quartz showed inclusions of thorite, metallic mercury in the basal portion; pyrite, cinnabar, and zircon in the intermediate portion; and pyrite, melanterite, anhydrite, and barite in the upper portion. The origin of these veins may be related to the regional magmatism in the Araguaia belt, but a possible influence of the final phases of the regional metamorphism cannot be ruled out. Contribution of meteoric water, mainly to the upper portions of the three colored quartz crystals, has also to be considered. The quartz veins with rutile and chlorite are hosted by the mica schists and quartzite of the Estrondo Group. They are composed by hyaline quartz crystals, rutile, chlorite, specular hematite, and magnetite. Fluids of the system H20-1CCI-NaCl, were identified in the quartz of the outer parts of the veie, as well as in the quartz with rutile and chlorite of the inner parts. However, the salinity of these fluids is higher in the quartz of the outer parts (18.80 to higher than 23.18 wt% of NaCl) than in the quartz with rutile and chlorite (4.34 a 5.26 wt% of NaCl). Th ranges from 293 to 345°C in the quartz of the outer zone, and from 136.54 to 198.9°C in the quartz with rutile and chlorite. The outer parts of the veie were possibly generated by fluids of magmatic and/or metamorphic origin. However, a considerai* contribution of meteoric waters is considered for the formation of the inner parts of the veins. The data suggest that the quartz veins systems are related to extensional tectonic and to hydrothermal events which took place in the late stages of structural development of the Araguaia belt, following the regional metamorphism and the consequent granitogenesis. In spite of the nature of the aqueous system, the magmatic and/or deep metamorphic fluids that generated the quartz veias show, initially, high salinity and medium to high temperature. Probably due to the increasing contribution of meteoric waters, both the salinity and temperatures (lower than 200° C) decreased. Later, tectonic reactivations during the Paleozoic and/or Mesozoic were responsible for migration and injection of silica bearing solutions, generated at depth, and by precipitation of silica as onix, jasper opal and opal C-T. More recently, opal A was formed in supergenic conditions.Item Acesso aberto (Open Access) Polyphase deformation and metamorphism of the Cuiabá group in the Poconé region (MT), Paraguay Fold and Thrust Belt: kinematic and tectonic implications(Universidade Federal do Pará, 2015-03) VASCONCELOS, Bruno Rodrigo; RUIZ, Amarildo Salina; MATOS, João BatistaSeveral deformation models have been proposed for the Paraguay Belt, which primarily differ in the number of phases of deformation, direction of vergence and tectonic style. Structural features presented in this work indicate that the tectonics was dominated by low dip thrust sheets in an initial phase, followed by two progressive deformation phases. The first phase of deformation is characterized by a slate cleavage and axial plane of isoclinal recumbent folds with a NE axial direction, with a recrystallization of the minerals in the greenschist facies associated with horizontal shear zones with a top-to-the-SE sense of movement. The second stage shows vergence towards the NW, characterized by crenulation cleavage axial plane to F2 open folds over S0 and S1, locally associated with reverse faults. The third phase of deformation is characterized by subvertical faults and fractures with a NW direction showing sinistral movement, which are commonly filled by quartz veins. The collection of tectonic structures and metamorphic paragenesis described indicate that the most intense deformation at the deeper crustal level, greenschistfacies, occurred during F1, which accommodated significant crustal shortening through isoclinal recumbent folds and shear zones with low dip angles and hangwall movement to the SE, in a thin-skinned tectonic regime. The F2 deformation phase was less intense and had a brittle to ductile behavior that accommodated a slight shortening through normal open subvertical folds, and reverse faults developed in shallower crustal level, with vergence towards the Amazonian Craton. The third phase was less pervasive, and the shortening was accommodated by relief subvertical sinistral faults.Item Acesso aberto (Open Access) Quartzo e cassiterita como marcadores da evolução magmático-hidrotermal dos Granitos Mocambo e Velho Guilherme, Província Carajás.(Universidade Federal do Pará, 2024-12-16) BARROS NETO, Rubem Santa Brígida.; LAMARÃO, Claudio Nery; http://lattes.cnpq.br/6973820663339281; https://orcid.org/0000-0002-0672-3977Quartz crystals from the Mocambo and Velho Guilherme Granite and cassiterite from the Mocambo Granite present in greisenized rocks and hydrothermal veins belonging to the Velho Guilherme Intrusive Suite, Xingu region, Amazonian Craton, were analyzed by scanning electron microscopy - cathodoluminescence (SEM-LC) and by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Morphological and textural analyses obtained through CL images allowed the identification of similar types and the definition of an evolution pattern for the quartz present in the rocks of both plutons. The magmatic type (Qz1), present in the least evolved and little altered rocks, passing through Qz2 and Qz3, common in moderately altered rocks, up to types Qz4 and Q5, dominant in the most evolved and hydrothermalized rocks, including the greisenized ones and the associated quartz veins, both markers of the mineralization of cassiterite, wolframite and sulfides present in this suite. Chemical analyses show that all quartz from the Mocambo Granite, which contains an important secondary cassiterite deposit, are more enriched and present greater variability in the elements analyzed. Magmatic quartz is more enriched in Ti and present varying levels of Al, K, P, Na and Fe. The higher contents of Al, K and Li identified in hydrothermal quartz differentiate them from magmatic quartz. In turn, cassiterite crystals show varied textures in cathodoluminescence images, such as concentric/oscillatory and sectoral zoning, as well as banding formed by more and less luminescent bands. Homogeneous dark zones are common and relict crystals, usually present in quartz veins associated with wolframite, are less luminescent. The main trace elements found in cassiterites are represented by Ti, Fe, Nb, Ta, W, Zr, Al and Hf, similar to those of tin mineralizations present in quartz and greisens veins of deposits from different geological environments. However, the pattern formed by the normalized “spidergram” is unique, presenting positive peaks of Sc, Ti, Nb, Sb, Ta and W and negative peaks of V, Mn and Fe.Item Acesso aberto (Open Access) Quartzo e zircão como marcadores da evolução magmático-hidrotermal do Granito Antônio Vicente, Suíte Intrusiva Velho Guilherme, Província Carajás(2013-06) LAMARÃO, Cláudio Nery; ROCHA, Kellen Katucha Nogueira; MARQUES, Gisele Tavares; BORGES, Régis Munhoz KrásFour morphological and textural types of quartz, informally labeled Qz1, Qz2, Qz3 and Qz4, were identified in the different facies of the Antônio Vicente Granite, Carajás Province, by scanning electron microscope-cathodoluminescence (SEM-CL) images. In the less evolved rocks, containing amphibole and biotite, well developed anhedral to subhedral, luminescent and intensely fractured crystals dominate, named Qz1. Hydrothermal fluids that percolated the granite modified the magmatic quartz (Qz1) into Qz2 and Qz3 through processes of alteration, dissolution and recrystallization, with these changes much more evident in the intensely altered syenogranite rocks. Qz4 constitute medium-to-coarse grained crystals, usually luminescent and comparatively little fractured. Its occurrence is restricted to strongly hydrotermalized syenogranite rocks and bodies of greisens, suggesting the beginning of the greisenization process. In the greisens, medium-to-coarse grained euhedral, concentrically zoned quartz crystals dominate, with typical features of hydrothermal origin (Qz5). Fine crystals of zoned cassiterite (≤ 100 µm) are common and fill cavities in the types Qz4 and Qz5. Zircon crystals dominantly anhedral, corroded, with the highest contents of Hf and the lower Zr/Hf ratios belong to more evolved and hydrothermally altered rocks and to associated greisens, both carriers of Sn mineralization. This fact suggests that the geochemical signature of zircon, especially Zr/Hf ratio, can be used for the preliminary assessment of metallogenic potential of tin granites.Item Acesso aberto (Open Access) Quartzo magmático e hidrotermal do depósito de ouro São Jorge, Província Aurífera do Tapajós, Pará: petrografia, microscopia eletrônica de varredura-catodoluminescência e implicações metalogenéticas(Universidade Federal do Pará, 2015-12) SOTERO, Aldemir de Melo; LAMARÃO, Cláudio Nery; MARQUES, Gisele Tavares; RODRIGUES, Paulo Roberto SoaresStudies in crystals of quartz present in the mineral associations to the area of the São Jorge gold deposit, Tapajós Gold Province, southwest of the Pará state, identified four morphological and textural types (Qz1, Qz2, Qz3 and Qz4) by scanning electron microscopy-cathodoluminescence images. In the more preserved rocks of the Younger São Jorge Jovem granite, rich in amphibole and biotite (associations 1 and 2), anhedral crystals of magmatic quartz with high to moderate luminescence (Qz1) dominate. In the partly altered rocks (associations 2 and 3), post-magmatic to hydrothermal fluids affected the granite, and filled fractures in Qz1 and crystallized not luminescent (dark) Qz2. In the most intensely altered rocks (association 4), successive alteration, dissolution and recrystallization processes gave rise to typically hydrothermal zoned, subhedral (Qz3) and euhedral (Qz4) quartz crystals. Images by backscattered electrons and semiquantitative analysis by energy dispersive spectroscopy identified two generations of gold: Au1, enriched in Ag (4.3 to 23.7%) and associated to pyrite crystals; Au2, enriched in Te (1.1 to 17.2%) and included or associated to Qz4. The scanning electron microscopy-cathodoluminescence study provided important information that was preserved in the quartz structure. The morphological and textural evolution of this mineral in different stages shows the gradual action of the hydrothermalism in the rocks and minerals associations of São Jorge deposit. Gold mineralization of the deposit was chemically (energy dispersive spectroscopy) and paragenetically (pyrite, sphalerite and Qz4) characterized, and it can be divided into different generations or mineralizing events. The effectiveness of the methodology used in this study was established, allowing its application in studies of other hydrothermal deposits.Item Acesso aberto (Open Access) Variações morfológicas e texturais de quartzo do Granito Antônio Vicente, Província Estanífera do Sul do Pará, reveladas através de imagens de MEV-catodoluminescência(Universidade Federal do Pará, 2011-07-11) ROCHA, Kellen Katucha Nogueira; LAMARÃO, Claudio Nery; http://lattes.cnpq.br/6973820663339281The Antonio Vicente Granite (AVG), located in the northwest of Sao Felix do Xingu, Carajás Province, is one of the bodies of the Velho Guilherme Intrusive Suite. It consists of isotropic syenogranite to monzogranite hololeucocratic to leucocratic rocks altered in different intensities by late to post-magmatic processes. The AVG hosts mineralization of Sn and other metals (Ta, Nb, Zr, Y) in its more evolved rocks and associated bodies of greisens. Geochemically, presents metaluminous to weakly peraluminous character, signature of A-type granites, and geotectonic affinity with intraplate granites. Four major petrographic domains were recognized: (1) Biotite-amphibole monzogranite to syenogranite (BASMG), preserved of late to post-magmatic alterations, (2) Amphibole-biotite syenogranite (ABSG), (3) Biotite monzogranite (BMG) and , (4) Biotite syenogranite (BSG) with variations to types altered and intensely altered, called, respectively, Altered biotite syenogranite (ABSG) and Intensely altered biotite syenogranite (IABSG). Tabular bodies of greisens occur in fractures and faults into syenogranite rocks. Petrographic and geochemical studies show that fractional crystallization was the major petrogenetic process that governed the evolution of this body. Five types of quartz were identified based on morphological and textural analysis using SEM CL: Qz1, luminescent, anhedral, fractured, medium to-coarse grained, locally zoned, present in all facies and considered the earlier type. Qz2, little luminescent, it forms irregular patches or discontinuous gray to dark gray edges on the Qz1; it is present in greater intensity in the more evolved rocks. Qz3, considered the later type, show black color and fills microfractures, sectioning previous types. It is rarer in greisens associated with AVG. Qz4, identified in the IABSG rocks and greisens, it forms well developed anhedral crystals, slightly fractured and with variable luminescence. It seems to mark the transition from magmatic to hydrothermal stage. Qz5, it was identified only in bodies of greisens or filling cavities in IABSG. It appears as euhedral crystals slightly fractured, sometimes forming clusters of fine crystals. It shows light-dark zoning in a typically well-defined hydrothermal pattern. Crystals of cassiterite are commonly associated with Qz4 and Qz5 types. The morphological and textural features suggest that magmatic quartz (Qz1) was modified and transformed into Qz2 and Qz3 by hydrothermal fluids that percolated the AVG. These alterations are more intense in the ABSG and IABSG. In the greisens, quartz crystals show typically hydrothermal quartz pattern. Preliminary chemical analysis by LA-ICP-MS on quartz crystals showed significant changes mainly in the contents of Ti, Al and Ge. The continuous decrease in the content of Ti with the differentiation of the AVG confirmed the compatible behavior of this element in granitic rocks and showed a negative correlation with Rb/Sr whole rock. Al showed a more irregular behavior, but decreased in the same direction. The Ge, considered a good indicator of magmatic differentiation, presented constant Ge/Ti ratios in the syenogranite and monzogranite rocks, but higher in intensely altered rocks and in the greisen, been a good indicator of magmatic evolution in granitic systems. The study of SEM-CL showed that quartz was an excellent marker of the changes imposed by the late to post-magmatic process that acted in the AVG. This study opens a new line of research in the GI of the UFPA, making this an important tool in geological studies.