Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Reaproveitamento (Tecnologia química)"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 2 de 2
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Comportamento mecânico e de flamabilidade de compósito de polipropileno reclicado com fibra de coco e hidróxido de alumínio
    (Universidade Federal do Pará, 2006-05-02) SILVA, Vera Lúcia Dias da; DIAS, Carmen Gilda Barroso Tavares; http://lattes.cnpq.br/2113791118142177
    The plastic recycling has been an interesting possibility to minimize the destiny problem of the plastic residues. The polypropylene (PP) is enters the types polymers of larger consumption, therefore the utilization of this material has been enabling the studies development of great scientific and social relevance. This polymer presents excellent cost-performance relation, besides can be easily conformed and to exibit mechanical properties that turns it useful in several applications. However, this material when being burnt generates products that act as combustible so that, for some uses, flame resistance good is necessary. This can be gotten by flame retardant addition, that has the intention to increase the resistance of this material to the ignition and, at the same time reducing the propagation speed of the flame. The aluminium hydroxide, or simply alumina hydrate, is the flame retardant agent used most in the market, therefore it also acts as smoke suppressant and it does not liberate toxic gases during the burning. However, for such properties, high alumina hydrate concentrations are necessary. This causes deterioration in the physical properties of the materials for not have reinforcing character. The natural fibres own good reinforcement capacity when combined adequately with polymers. Also presenting advantages as low cost, low density, biodegradability and in the combustion does not emanate toxic gases. In this work, mixtures contend alumina hydrate and coco fibres had been incorporated polypropylene with the objective of if finding an properties rocking adequate for use of this composite with characteristics flame resistance and mechanical performance. The composites were molded by hot compression and characterized by IV, DRX, MEV, mechanical and non-flammability tests. Increase in the elasticity modulus of the composites in general was observed, as well as increase in the tenacity resistance of the PP/coco fiber composite regarding pure PP. The results had indicated the efficiency of alumina hydrate as it flame retardant, in all the composites, except PP/F, classifying the materials as V-0 according to international norm UL 94V.
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Estudo de reaproveitamento de filmes de polietileno para fabricação de colchões de ar comprimido para utilização em embalagens de produtos eletroeletrônicos
    (Universidade Federal do Pará, 2011-02-28) OLIVEIRA, Macêdo Santos de; SOUZA, José Antônio da Silva; http://lattes.cnpq.br/6157348947425968
    Films of polyethylene (PE) are commonly used in packaging of small products such as packaging for digital cameras, camcorders, wine bottles, medical instruments, etc... as a function of important properties such as mechanical strength (vibration, drop, etc..) thermal (temperature, humidity, pressure) with the ease of processing and a cost. In electronics packaging, are used PE films of low density, depending on the product being package. In this work, films were evaluated as lowdensity polyethylene used for packing display panels on the production line, consisting of a single polymer, replacing the packaging of expanded polystyrene (EPS) by a polyethylene cushion with air mattress inflated with changes in the thickness of the films were subjected to the fusion of two layers of training for air mattresses, under certain conditions of temperature and pressure, where expansion of the films resulted in significant changes in physical, mechanical. The films were characterized before and after welding for clothing of air mattresses in the format of columns of air that can be molded into packaging for consumer electronics. It was observed that change according to the type of material making up the films of polyethylene, that is, the more resistant to compression test, the greater the degree of impact absorption when this raw material in the form of inflated air mattress this means an excellent performance to bear the weight of a product during the mechanical test, such as drop test, vibration test, test temperature and humidity. Studies show that we can study and test films with high strength and are discarded and reprocessed in the factories for the manufacture of inflatable cushions to be used in various products. The reuse of these raw materials helps to reduce the rate of waste disposed in the environment.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA