Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Rede neural de regressão geral"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 2 de 2
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    DissertaçãoAcesso aberto (Open Access)
    Síntese de superfícies seletivas de frequência multicamadas via otimização bioinspirada
    (Universidade Federal do Pará, 2019-08-23) LIMA, Wirlan Gomes; ALCÂNTARA NETO, Miércio Cardoso de; http://lattes.cnpq.br/0549389076806391; BARROS, Fabrício José Brito; http://lattes.cnpq.br/9758585938727609
    A análise de dispositivos eletromagnéticos via softwares computacionais, geralmente, demanda alto custo computacional e elevado tempo de processamento. Em certas situações, para atender certos objetivos de projeto, encontrar os parâ- metros estruturais ótimos podem levar dias ou até mesmo semanas quando feitos pelo método da tentativa e erro, ao se buscar respostas precisas em estruturas de alta complexidade. Neste cenário, as ferramentas de computação bioinspiradas (Bioinspired Computation - BIC) são fortes aliadas em economia de tempo, custo computacional e, consequentemente, de dinheiro. Para intensificar o poder e a efici- ência dessas ferramentas, métodos híbridos têm sido desenvolvidos, nos quais redes neurais trabalham conjuntamente com algoritmos de otimização a fim de obter re- sultados ainda mais satisfatórios e precisos. Nesse contexto, este trabalho apresenta a utilização de dois modelos híbridos de otimização bioinspirada multiobjetivo para o projeto e síntese de superfícies seletivas de frequência (Frequency Selective Surfaces - FSS) multicamadas. Inicialmente, é feita uma investigação eletromagnética da célula unitária das estruturas do tipo patch que irão compor a FSS multicamadas, sendo elas uma espira triangular e um losango sólido impressos em substrato de fibra de vidro (FR-4). As simulações computacionais foram realizadas com o auxílio do software CST® Micro Wave Studio, cuja técnica numérica utilizada é a dasintegrais finitas (FIT). São projetados três filtros com características distintas que abrangem as bandas C, X e Ku. O processo de síntese consiste em sintonizar os objetivos das estruturas inseridos na função custo dos algoritmos de otimização. A modelagem das estruturas é realizada por uma rede neural de regressão geral (General Regression Neural Network - GRNN) e o processo de otimização é realizado pelos algoritmos. As simulações computacionais para cálculo dos dados eletromagnéticos (EM) das FSS multicamadas foram realizadas aplicando o software CST®. Os valores otimizados retornados pelos modelos híbridos também foram simulados usando o software Ansoft DesignerTM HFSS para avaliar os resultados obtidos anteriormente. Observou-se boa concordância entre os resultados simulados, evidenciando a redução no tempo de processamento das estruturas, além de mostrar que o modelo GRNN-AG Multi se sobressaiu em relação ao GRNN-MOCS, apresentando erros em relação aos objetivos de projeto para as simulações em CST® de 0,44%, 0,254% e 0,387% para os filtro 1, 2 e 3, respectivamente, sendo este o modelo híbrido mais eficiente para a otimização de FSS multicamadas.
  • Carregando...
    Imagem de Miniatura
    TeseAcesso aberto (Open Access)
    Síntese de superfícies seletivas de frequência para micro-ondas utilizando otimização multiobjetivo bioinspirada
    (Universidade Federal do Pará, 2015-08-19) ALCÂNTARA NETO, Miércio Cardoso de; D'ASSUNCÃO, Adaildo Gomes; http://lattes.cnpq.br/4159638862269940; CAVALCANTE, Gervásio Protásio dos Santos; http://lattes.cnpq.br/2265948982068382
    A evolução da computação tem possibilitado avanços substanciais em pesquisas relacionadas à engenharia e em projetos industriais. Nestas áreas, o emprego de ferramentas computacionais tem se intensificado para simulação e obtenção de determinados parâmetros do projeto. No entanto, a crescente demanda por precisão e o aumento gradativo da complexidade das estruturas e sistemas, resulta num processo de simulação cada vez mais demorado, pois a avaliação de um único critério pode consumir várias horas, bem como vários dias ou até mesmo semanas. Logo, um método que minimize o tempo de simulação e otimização, pode, assim, economizar tempo e dinheiro. Nesse contexto, a computação bioinspirada (bioinspired computing - BIC), se apresenta precisa e eficiente, onde muitos métodos computacionais tradicionais falham e, consiste em novo mecanismo para suprir tais dificuldades. Assim, neste trabalho, é realizado um estudo acerca de alguns dos algoritmos BIC mais utilizados na atualidade para projeto e otimização de problemas gerais na engenharia e na indústria. Doravante, se vislumbra desenvolver um código de otimização meta-heurístico multiobjectivo que apresente menor custo computacional e, consequentemente, menor tempo para processamento dos dados. Inicialmente, é realizada uma investigação eletromagnética das superfícies seletivas de frequência triangulares estudadas, através de simulações computacionais. A análise numérica de onda completa é feita pela técnica das integrais finitas com o auxílio de um software comercial muito utilizado para simulações em eletromagnetismo. O processo de síntese consiste em sintonizar a frequência de ressonância das estruturas e a largura de banda de acordo com os objetivos inseridos na função custo dos algoritmos de otimização. A modelagem das estruturas é realizada por uma rede neural artificial e o processo de otimização é realizado por algoritmos meta-heurísticos. Os resultados obtidos por esses códigos são comparados aos simulados pelo software comercial e aos medidos. Observou-se boa concordância entre os resultados simulados e medidos, bem como uma substancial redução no menor tempo de processamento das estruturas. Por fim, são apresentadas as conclusões e as propostas para trabalhos futuros.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2026 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA