Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Rede neural probabilística"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    ItemAcesso aberto (Open Access)
    Detecção, classificação e quantificação automática de variações de tensão de curta duração para aplicação em análise de pós-operação em sistemas de energia elétrica
    (Universidade Federal do Pará, 2006-05-19) MACHADO, Raimundo Nonato das Mercês; PELAES, Evaldo Gonçalves; http://lattes.cnpq.br/0255430734381362; BEZERRA, Ubiratan Holanda; http://lattes.cnpq.br/6542769654042813
    The analysis of occurrences in electric power systems is of fundamental importance for secure operation of the system, and to maintain quality of the electric energy supplied to the consumers. The electric power utilities use equipments called disturbance registers (DR’s) for monitoring and diagnose of problems in the electric and protection systems. The waveforms usually analyzed in the electric power utilities operation centers, are those generated by events that usually cause the opening of lines due to circuitbreakers operation commanded by the protection devices. However, a great amount of stored data that can contain important information on the behavior and the performance of the system is not analyzed. The proposal of this work is to use the available data in electric power utilities control and operation centers obtained from DR’s equipments, to classify and quantify of automatic form signals that characterize power quality problems, such as, short duration voltage variations: sags, swells and interruptions. The proposed method uses wavelet transform to obtain a characteristic vector for voltages in phases A, B and C, and a probabilistic neural network is used for classification. The classified signals as presenting short-duration variation are quantified for duration and magnitude of the event, using the multiresolution decomposition signal analysis properties. Those parameters, then, will form a database where statistical procedures of analysis can be used to prepare reports regarding power quality features. The results obtained with the application of this proposed methodology to a real system are also presented.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2025 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA