Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Redes Neurais Convolucionais"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    TeseAcesso aberto (Open Access)
    Classificação automática de arritmias cardíacas através de redes neurais convolucionais multimodais com mecanismo de atenção
    (Universidade Federal do Pará, 2025-02-19) DI PAOLO, Ítalo Flexa; CASTRO, Adriana Rosa Garcez; http://lattes.cnpq.br/5273686389382860; https://orcid.org/0000-0001-5884-4511; ARAÚJO, Jasmine Priscyla Leite de; OLIVEIRA, Roberto Célio Limão de; PONTE, Márcio José Moutinho da; OHASHI JÚNIOR, Orlando Shigueo; http://lattes.cnpq.br/4001747699670004; http://lattes.cnpq.br/4497607460894318; http://lattes.cnpq.br/4760076685971693; http://lattes.cnpq.br/8905793797626608; https://orcid.org/0000-0003-3514-0401; https://orcid.org/0000-0002-6640-3182; https://orcid.org/0000-0002-0724-3721; xxx
    O eletrocardiograma (ECG) é uma tecnologia não invasiva capaz de registrar os batimentos cardíacos, sendo a técnica mais utilizada para o diagnóstico de doenças do coração. Dentre as doenças que podem ser diagnosticadas, a arritmia cardíaca é uma das cardiopatias mais comuns, sendo caracterizada pela ocorrência de batimentos cardíacos irregulares. Entretanto, a interpretação de longos registros de sinais de ECG é uma tarefa cansativa e desafiadora, quando feita de forma visual, que pode demandar tempo por parte dos médicos especialistas. A evolução da tecnologia e da inteligência artificial tem permitido avanços para o estudo e desenvolvimento de sistemas automáticos para auxílio ao diagnóstico médico. Dentro desse contexto, esta tese visa apresentar a proposta de uma estrutura para classificação de arritmias cardíacas baseada em uma Rede Neural Convolucional (CNN) multimodal com mecanismo de atenção. A estrutura recebe como entrada segmentos de sinal ECG transformados em imagens a partir das técnicas Hilbert Space Filling Curve (HSFC) e Recurrence Plot (RP) e foi desenvolvida e avaliada a partir do banco de dados público MIT-BIH e PTB, seguindo as diretrizes da AAMI (ANSI/AAMI EC57) e considerando os paradigmas interpaciente e intrapaciente. Devido ao alto desbalanceamento de classes nos bancos de dados, técnicas complementares de aumento de dados foram avaliadas durante a fase de experimentos, destacando-se duas: SMOTE e WGAN-GP. Os resultados alcançados, considerando variações na entrada daestrutura relacionadas ao número de derivações do ECG (derivação MLII e V + MLII), podem ser considerados competitivos com trabalhos apresentados no estado da arte, com destaque para os resultados da estrutura para duas derivações do ECG, tendo obtido, para a base MIT-BIH, no paradigma intrapaciente, 99,72%, 98,19%, 97,26%, 99,34% e 97,72% de acurácia global, precisão, sensibilidade, especificidade e F1-Score, respectivamente. No paradigma interpaciente, os resultados atingidos foram de 98,48%, 94,15%, 80,23%, 96,34% e 81,91%, respectivamente.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2026 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA