Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Redes Neurais Profundas"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    DissertaçãoAcesso aberto (Open Access)
    Estimativa da força de reação do solo a partir de acelerômetros com redes neurais profundas: um estudo comparativo entre arquiteturas BI-LSTM, TCN e híbrida
    (Universidade Federal do Pará, 2025-08-12) LIMA JÚNIOR, Sérgio de Nazaré Rodrigues; ZAMPOLO, Ronaldo de Freitas; http://lattes.cnpq.br/9088524620828017; https://orcid.org/0000-0002-2460-3135; Pereira Júnior, Antônio; http://lattes.cnpq.br/1402289786010170; https://orcid.org/0000-0002-0808-1058; GOMES, Bruno Duarte; MATOS, Felipe de Oliveira; CARDOSO, Diego Lisboa; ***; ***; http://lattes.cnpq.br/0507944343674734; ***; ***; https://orcid.org/0000-0002-5971-3668
    A força de reação do solo (Ground Reaction Force – GRF) é uma variável biomecânica essencial para a análise da marcha humana, amplamente utilizada em contextos clínicos, esportivos e de reabilitação. Tradicionalmente, sua medição precisa depende de plataformas de força ou palmilhas instrumentadas, equipamentos de alto custo e restritos a laboratórios especializados. Este estudo propõe uma alternativa baseada na estimativa da GRF por meio de sinais de acelerômetros processados por redes neurais profundas. Foram comparadas três arquiteturas: Bi-LSTM (Bidirectional Long Short-Term Memory), TCN (Temporal Convolutional Network) e uma arquitetura Híbrida. O pré-processamento envolveu filtragem, normalização por z-score e janelamento, e o treinamento supervisionado foi realizado com validação cruzada. Os resultados demonstraram que o sensor posicionado no pé apresenta a maior similaridade com a GRF, justificando seu uso nos modelos. Entre as arquiteturas, o modelo Híbrido obteve o melhor desempenho em termos de acurácia (RMSE de 103,22 N, rRMSE de 6,90%, R² = 0,87 e correlação cruzada de 0,96), enquanto a Bi-LSTM apresentou resultados próximos, porém com maior custo de treinamento. Já a TCN, apesar de ser a mais eficiente em termos de tempo de processamento (6 minutos e 13 segundos no treinamento e 0,02 segundos por predição), apresentou desempenho inferior (RMSE de 152,05 N, rRMSE de 10,49% e R² = 0,70). Esses achados evidenciam um compromisso entre desempenho e eficiência computacional: o modelo Híbrido destacou-se como a melhor opção para estimativas precisas da GRF. Em todos os casos, os tempos de inferência foram reduzidos e compatíveis com aplicações em tempo real, confirmando a viabilidade da abordagem proposta para monitoramento da marcha fora de ambientes laboratoriais.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2026 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA