Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Redes de computadores"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    DissertaçãoAcesso aberto (Open Access)
    Aprendizagem profunda aplicada a telecomunicações: classificação de modulação e controle de congestionamento
    (Universidade Federal do Pará, 2019-05-31) NASCIMENTO, Ingrid Ariel Silva; KLAUTAU JÚNIOR, Aldebaro Barreto da Rocha; http://lattes.cnpq.br/1596629769697284
    O objetivo deste trabalho é explorar técnicas de Deep Learning (DL) aplicada a Telecomunicações. DL obtém sucesso comprovado em áreas como Visão Computacional e Detecção de Objetos. Torna-se portanto importante investigar a sua aplicação em problemas na área da Comunicação. Sendo assim, dois problemas distintos são examinados. No primeiro deles, DL é aplicada à Classificação de Modulação (CAM), onde o problema é detectar de forma automática o esquema de modulação adotado. CAM é importante, por exemplo, em Rádios Cognitivos e aplicações militares. Neste trabalho são discutidos benefícios e desvantagens de usar DL como alternativa para CAM, em especial comparando-se a eficiência de DL em relação a outros métodos de Aprendizado de Máquina. A outra aplicação de DL em comunicações é no Controle de Congestionamento. O contexto é o de Fronthaul em arquiteturas C-RAN, com o controle de congestionamento usado em prol do atendimento de requisitos estritos impostos à rede 5G. Mais especificamente, investiga-se a aplicação de DL juntamente com técnicas de Reinforcement Learning (RL). Neste tópico, a dissertação apresenta um arcabouço para investigações de controle de congestionamento em fronthaul, e a implementação de um modelo e respectivo ambiente utilizando NS-3 e a API Gym do grupo OpenAI para simulações. O arcabouço desenvolvido é validado com experimentos preliminares comparando métodos de Deep Reinforcement Learning (DRL) e métodos tradicionais de Controle de Congestionamento, utilizando-se índices como vazão e latência.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2026 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA