Navegando por Assunto "Redes neurais artificiais"
Agora exibindo 1 - 20 de 37
- Resultados por página
- Opções de Ordenação
Dissertação Acesso aberto (Open Access) Algoritmos para seleção de metodologias de avaliação de softwares educacionais(Universidade Federal do Pará, 2023-09-26) CASTILHO, Janize Monteiro de; FARIAS, Fabricio de Souza; http://lattes.cnpq.br/1521079293982268; https://orcid.org/0000-0003-4344-6953Com o propósito de auxiliar nos processos de ensino-aprendizagem, muitos professores têm decidido utilizar Software Educacional (SE) em suas aulas. No entanto, para escolher um SE como recurso didático é fundamental avaliar a metodologia empregada pelo professor, uma vez que esta precisa ser pedagogicamente e funcionalmente apropriada para suprir as necessidades e objetivos presentes em sala de aula. Além disso, é necessário fazer uso de mecanismos que avaliem o SE para verificar sua adequação aos objetivos do professor. Atualmente, verifica-se que existem diversas técnicas e metodologias disponíveis na literatura para avaliação de SE, no entanto ainda não há uma solução para tomada de decisão e escolha de um SE que atenda plenamente os perfis de usuários e suas diferentes necessidades a serem atendidas por determinada aplicação metodológica, o que gera a demanda oriunda do desenvolvimento de soluções feitas sob demanda e com baixa capacidade de generalização em termos de aplicação prática. Desta forma, são disponibilizadas soluções sem padronização e que diversas vezes não levam em consideração critérios relativos à qualidade, escalas de mensuração e procedimentos de verificação do SE. Essa heterogeneidade dificulta muito a avaliação de um SE, uma vez que a subjetividade na escolha da metodologia de avaliação de SE pode produzir resultados inconclusivos. Diante deste contexto, esse trabalho criou um modelo de qualidade que considera 24 metodologias de avaliação de SE disponíveis na literatura e objetiva automatizar a escolha da metodologia de avaliação de SE a partir da aplicação de algoritmos de inteligência artificial (IA), reduzindo a possibilidade de subjetividade no processo de escolha. Durante a investigação foram utilizados processamento de linguagem natural (PLN), Random Forest, k-Nearest Neighbors e Redes Neurais Artificiais. Em todos os cenários de pesquisa, o processamento de linguagem natural foi combinado com os demais algoritmos, oferecendo uma solução baseada na aplicação de algoritmos de IA híbridos e fracamente acoplados, com vistas na melhoria dos resultados. Deste modo, sendo realizadas simulações considerando PLN+Random Forest, PLN+k-Nearest Neighbors e PLN+Redes Neurais Artificiais. Após as simulações, os resultados indicam que é possível determinar a melhor metodologia de avaliação de SE utilizando algoritmos de IA, sendo obtido os melhores resultados com a combinação de PLN+Random Forest.Tese Acesso aberto (Open Access) Análise de tendências de variáveis hidroclimáticas na bacia hidrográfica Araguaia-Tocantins e suas implicações na agricultura irrigada(Universidade Federal do Pará, 2019-02-28) SALAME, Camil Wadih; BARBOSA, Joaquim Carlos; SOUZA, Everaldo Barreiros de; http://lattes.cnpq.br/6257794694839685; https://orcid.org/0000-0001-6045-0984A Bacia Hidrográfica Araguaia-Tocantins (BHAT) é a mais intensa em áreas de drenagem dentro do território brasileiro, com processos de uso e ocupação cada vez mais crescentes em termos das demandas do agronegócio e exploração mineral. Nesta pesquisa realizou-se um estudo estatístico sobre as tendências hidroclimáticas (precipitação e vazão) na BHAT e suas relações com a agricultura irrigada. O mapeamento hidroclimático baseado na análise de agrupamento identificou quatro regiões homogêneas dentro do BHAT, duas ao norte com predominância de altos valores de chuva/vazão e alta disponibilidade hídrica e duas regiões se estendendo ao longo da bacia, com valores mais baixos de chuva e vazão e menor disponibilidade hídrica. O regime chuvoso da BHTA ocorre entre dezembro e março e o regime seco entre maio e setembro. Os meses de outubro/novembro e abril são os de transição com variações pronunciadas no ciclo sazonal. O estudo geoestatístico de provisões chuva/vazão revelou que os resultados usando o modelo de Box-Jenkings é relativamente melhor quando comparado ao modelo de Redes Neurais Artificiais. A abordagem integrada das variações hidroclimáticas com os dados agropecuários dentro da BHTA revelaram um padrão significante de tendências negativas de precipitação e vazões coincidentes espacialmente nas regiões de intensa produtividade de milho e soja e de rebanho bovino. Um resultado relevante foi deteção de correlação espacial significativa entre o número de pivos centrais em regiões com baixa disponibilidade hídrica, os quais favorecem a produtividade das culturas temporárias.Dissertação Acesso aberto (Open Access) Aplicação de sensores virtuais na estimação da concentração dos parâmetros físico-químicos e metais em corpos d’água de reservatórios de hidrelétricas: um estudo de caso na Região Amazônica(Universidade Federal do Pará, 2014-10-23) RIBEIRO NETO, Benedito de Souza; OLIVEIRA, Terezinha Ferreira de; http://lattes.cnpq.br/6230804143692945; SILVEIRA, Antônio Morais da; http://lattes.cnpq.br/7549503749842625Esta pesquisa apresenta a utilização de sensores virtuais na estimação da concentração dos parâmetros físico-químicos e metais no monitoramento da qualidade da água de reservatórios da Amazônia, por meio de redes neurais artificiais (RNA’s) e imagens de sensoriamento remoto. A análise fatorial das variáveis consideradas no estudo, confirmou o relacionamento da primeira faixa de profundidade do disco de Secchi, Ferro Total, PO4, P Total, TSS e Turbidez em um único fator, pois estes apresentam grande refletância e boa absorção de energia pelos sensores dos satélites. Estes elementos foram estimados por RNA’s, produzindo resultados bem próximos dos valores observados. Os testes de validação também confirmaram a boa aproximação para a primeira faixa de profundidade do disco de Secchi, Fe Total, STS e Turbidez do reservatório de água. No caso específico dos parâmetros PO4 e P Total, além do problema do pouco número de estações de coleta de dados disponíveis e a variabilidade inerente ao ciclo hidrológico da região, constatou-se, por meio da interpretação das imagens, falta de similaridades entre os dados utilizados no treinamento e na validação da RNA. De modo geral, o estudo demonstrou a eficácia da aplicação de sensores virtuais e imagens de satélite no monitoramento da qualidade da água de reservatórios na Amazônia, proporcionando uma alternativa com bom índice de precisão e menos dispendiosa de recursos no processo de monitoramento desse recurso.Dissertação Acesso aberto (Open Access) Avaliação de desempenho de técnicas de localização em ambientes reais aplicadas a redes de sensores sem fio(Universidade Federal do Pará, 2014-05-26) MACHADO, Leomário Silva; MONTEIRO, Dionne Cavalcante; http://lattes.cnpq.br/4423219093583221; ARAÚJO, Josivaldo de Souza; http://lattes.cnpq.br/8158963767870649A localização em redes de sensores sem fio é um desafio que vai além do uso do popular GPS, com trabalhos diversos que visam aprimorá-lo ou mesmo substituí-lo. A localização pode ser realizada utilizando múltiplas antenas e seus respectivos ângulos, tempo e sincronização, diferencial de tempo entre envio de dois rádios diferentes ou mesmo com a potência do sinal.A partir destes padrões de estimativa, várias técnicas foram postuladas com objetivo de se utilizar dos recursos disponíveis para mensurar distâncias e estimar as coordenadas de um nó. Dentre estas técnicas pode-se citar como as mais importantes a Lateração, Nearest Neighbor, K-Nearest Neighbor, Min-Max, Non-Linear Regression, Iterative Non- Linear Regression, Sum-Dist, Dv-hop, Rede Neural Artificial, filtro de Kalman. Este trabalho conduz um conjunto de testes realizados em dois ambientes, sendo o primeiro indoor, e o segundo outdoor utilizando como hardware os módulos IRIS da MEMSIC para realização do experimento. Nestes testes são comparadas as técnicas Lateração, KNN e uma Rede Neural Artificial é proposta para o objetivo de estimar a localização de um nó da RSSF. São apresentadas as formulações matemáticas da Lateração e KNN, assim como a configuração da Rede Neural utilizada nos testes conduzidos neste trabalho. Os resultados são exibidos tomando o benchmark entre as técnicas para análise comparativa percentual entre as mesmas e para melhor análise quantitativa, os dados são Tabelados para visualização da precisão.Tese Acesso aberto (Open Access) Avaliação de modelos de inteligência artificial híbridos na estimativa de precipitações(Universidade Federal do Pará, 2022-03-18) GOMES, Evanice Pinheiro; BLANCO, Claudio José Cavalcante; http://lattes.cnpq.br/8319326553139808As análises hidrológicas realizadas a partir das precipitações na Amazônia são essenciais devido a sua importância na regulação do clima, na circulação atmosférica regional e global. No entanto, nesta região, existem limitações relacionadas a séries de dados com períodos curtos e muitas falhas, sobretudo na escala diária. Apesar dos avanços significativos em ciência e tecnologia, previsões práticas e precisas tem sido uma grande preocupação, devido a sua complexidade. Portanto, vários modelos conceituais, empíricos ou híbridos vêm sendo testados para estimativas de chuva com maior precisão. Dentre os modelos empíricos, os que incorporam métodos de inteligência artificial (IA) são abordagens potencialmente úteis para simular o processo de precipitação. As Redes Neurais Artificiais (RNA), como modelos de IA, são capazes de estabelecer uma relação entre entradas históricas (chuva, vazão, etc.) e as saídas desejadas, através de função não linear composta de vários fatores que são ajustados aos dados observados, permitindo sua estimativa. Assim, para melhorar as análises de precipitações, foi desenvolvido modelos híbridos, envolvendo Rede Neural Artificial (RNA) do tipo com Retardo de Tempo (TDNN), rede ELMAN, rede de Base Radial (RBF) e Sistema de Inferência Neuro-Fuzzy Adaptativo (ANFIS), acoplado com Wavelet Discreta de Máxima Sobreposição (MODWT). Adotaram-se 6 estações pluviométricas, que estão localizados em diferentes biomas da região, e dados de satélite (CMORPH). Os dados de chuva foram avaliados por períodos sazonais (chuvoso e menos chuvoso). Os resultados obtidos demostraram que o modelo MODWT-ANFIS teve a melhor capacidade em simular as precipitações diárias das estações pluviométricas avaliadas, mesmo para períodos menos chuvoso, que são sabidamente mais difíceis de serem simulados em relação aos períodos chuvosos. Nesse caso, as entradas de dados defasadas para 4 dias e 5 dias apresentaram melhor desempenho, com valores de Nash próximos a 1,0 e erros médios quadráticos inferiores a 0,001.Artigo de Periódico Acesso aberto (Open Access) Classificação de estratos florestais utilizando redes neurais artificiais e dados de sensoriamento remoto(Instituto de Pesquisas Ambientais em Bacias Hidrográficas, 2016-09) GONÇALVES, Wanderson Gonçalves e; RIBEIRO, Hebe Morganne Campos; SÁ, José Alberto Silva de; MORALES, Gundisalvo Piratoba; FERREIRA FILHO, Hélio Raymundo; ALMEIDA, Arthur da CostaO presente estudo objetivou a classificação de tipologias florestais por meio de redes neurais artificiais utilizando dados provenientes de um inventário florestal, fornecido pelo Instituto de Desenvolvimento Florestal e da Biodiversidade do Estado do Pará (IDEFLOR-BIO), e das bandas 3, 4 e 5 do TM do satélite Landsat 5. As informações provenientes das imagens de satélite foram extraídas por meio do aplicativo QGIS 2.8.1 Wien e utilizadas no banco de dados para o treinamento das redes neurais pertencentes às ferramentas do software MATLAB(r) R2011b. Foram treinadas redes neurais como classificadores de dois tipos florestais: Floresta Ombrófila Densa de Terras baixas Dossel emergente (Dbe) e Floresta Ombrófila Densa Terras baixas Dossel emergente mais Aberta com palmeiras (Dbe + Abp) no conjunto de glebas estaduais Mamuru-Arapiuns, Pará, e avaliadas usando os indicadores matriz de confusão, cálculo de acurácia global, coeficiente Kappa e o gráfico de características do receptor operacional (ROC). O melhor resultado de classificação foi obtido por meio da rede neural probabilística de função de base radial (RBF) "newpnn", com uma acurácia global de 88%, e coeficiente Kappa de 76%, sendo avaliado como um classificador muito bom, evidenciando a aplicação dessa metodologia na análise de áreas com potencial para prestar serviços ecossistêmicos e, principalmente, na prestação de serviços ambientais em áreas antrópicas que adotam sistema de produção agropecuária com baixa emissão de carbono na Amazônia.Dissertação Acesso aberto (Open Access) . Clusterização, classificação e predição de “pré-efeito anódico” de cuba eletrolítica de alumínio primário(Universidade Federal do Pará, 2020-08-21) CONTE, Bruno Nicolau Magalhães de Souza; OLIVEIRA, Roberto Célio Limão de; http://lattes.cnpq.br/4497607460894318O setor industrial é um dos principais responsáveis pela grave situação ambiental do planeta e também por crescentes exigências legais, com relação aos resíduos gerados. Em contrapartida, muitas empresas têm reagido pró ativamente, a partir da implantação de estratégias de gestão como: produção limpa, certificação ambiental, redução de resíduos tóxicos, reciclagem, consumo sustentável e reuso, principalmente. É oportuno ressaltar, que o processo de redução de alumínio é responsável por uma grande quantidade de emissão de gases causadores do efeito estufa e, assim, promove impactos ambientais e alterações climáticas graves. Durante o processo de redução de alumínio, a ocorrência do efeito anódico provoca um aumento extremo na tensão da cuba e, consequentemente, uma elevação na temperatura do banho, com temperaturas altíssimas, resultado em um distúrbio térmico, com a possibilidade de ocorrer o derretimento da camada isolante da cuba e as consequências finais são a perda de produção em toda a linha de cubas, sua vida útil diminuída e a produção de gases PFCs. Buscando uma estratégia apoiada na sustentabilidade, tento em vista a problemática do agravamento do Efeito Estufa, o aumento extremo na tensão do forno e, consequentemente, a perda de produção em toda a linha de cubas, este trabalho propõe o uso de uma Rede Neural Artificial junto com algoritmos de Clusterização para criar automaticamente os rótulos de pré-Efeito anódico, e assim, predizer o comportamento dinâmico não-linear da ocorrência do pré-efeito anódico do forno da indústria de redução de alumínio primário, com base em dados reais das cubas eletrolíticas. Com a utilização desses modelos de Machine Learning pode-se prever a ocorrência do pré-efeito anódico permitindo que os operadores de processos tomem medida mitigadoras de supressão do efeito anódico, evitando a perda da produção do alumino na cuba e diminuindo a emissão de gases do efeito estufa.Dissertação Acesso aberto (Open Access) Comparação entre regressão linear, redes neurais artificiais e árvores de regressão para quantificação do impacto harmônico de múltiplas cargas em redes elétricas de distribuição.(Universidade Federal do Pará, 2018-11-19) PAIXÃO JÚNIOR, Ulisses Carvalho; TOSTES, Maria Emília de Lima; http://lattes.cnpq.br/4197618044519148Nos últimos anos, o desenvolvimento socioeconômico da população, o crescimento dos setores comercial e industrial, assim como a instalação cada vez mais crescente de novas cargas, têm gerado grande evolução na demanda do consumo de energia elétrica. Por sua vez, buscando obter sistemas mais eficientes, os fabricantes têm produzido equipamentos energeticamente mais eficientes para utilização residencial, comercial e industrial. No entanto, essas cargas, devido à sua não linearidade, têm contribuído significativamente para o aumento dos níveis de distorção harmônica de tensão e corrente, elevando a preocupação dos gestores do setor elétrico quanto a qualidade de energia elétrica (QEE), principalmente, pela dificuldade na identificação da origem da distorção harmônica. Logo, visando antecipar os efeitos harmônicos e atender a regulamentação vigente, por meio de técnicas computacionais, no presente trabalho dá-se ênfase no ponto de acoplamento comum (PAC), independente das características de consumo e cargas, com o intuito de avaliar os impactos harmônicos em sua rede, além de comparar o nível de confiabilidade das técnicas por meio do erro absoluto médio (EAM). A metodologia proposta utiliza o software de Sistema de Qualidade de Energia Elétrica (SISQEE) que possibilita a utilização de três técnicas computacionais distintas, sendo Regressão Linear, Redes Neurais Artificiais e Árvores de Regressão, para avaliar a contribuição harmônica de cada alimentador no ponto de interesse das redes elétricas escolhidas. Para comprovar a validade da metodologia, são elaborados dois estudos de caso baseadas em medições reais em uma universidade e em um polo industrial. As medições foram realizadas com o período mínimo amostral de sete dias através de analisadores de QEE, conforme procedimentos de distribuição da ANEEL (PRODIST). Como resultado da QEE, verificou-se o quanto cada alimentador impacta a distorção de tensão e corrente no PAC, além de classificar os alimentadores com relação a seu respectivo impacto na rede elétrica estudada. Também como resultado, os estudos propiciaram a avaliação de desempenho entre as diferentes técnicas, com diferentes intervalos de tempo (semanal, diário e por patamar de carga), permitindo classificar o comportamento e a confiabilidade de cada técnica em cada período. Como conclusão do trabalho, os métodos propostos e as análises apresentadas dão subsídios aos gestores para efetuar uma ação mitigadora mais eficiente dos impactos harmônicos causados na rede elétrica e, também, identificar as diferenças entre as técnicas e seu grau de confiabilidade, de acordo com os intervalos temporais estudados.Dissertação Acesso aberto (Open Access) Correlação de poços com múltiplos perfis através da rede neural multicamadas(Universidade Federal do Pará, 2001-11-23) AMARAL, Mádio da Silva; ANDRADE, André José Neves; http://lattes.cnpq.br/8388930487104926A correlação estratigráfica busca a determinação da continuidade lateral das rochas, ou a equivalência espacial entre unidades litológicas em subsuperfície, a partir de informações geológico-geofísicas oriundas de poços tubulares, que atravessam estas rochas. Normalmente, mas não exclusivamente, a correlação estratigráfica é realizada a partir das propriedades físicas registradas nos perfis geofísicos de poço. Neste caso, busca-se a equivalência litológica a partir da equivalência entre as propriedades físicas, medidas nos vários poços de um campo petrolífero. A técnica da correlação estratigráfica com perfis geofísicos de poço não é uma atividade trivial e sim, sujeita a inúmeras possibilidades de uma errônea interpretação da disposição geométrica ou da continuidade lateral das rochas em subsuperfície, em função da variabilidade geológica e da ambigüidade das respostas das ferramentas. Logo, é recomendável a utilização de um grande número de perfis de um mesmo poço, para uma melhor interpretação. A correlação estratigráfica é fundamental para o engenheiro de reservatório ou o geólogo, pois a partir da mesma, é possível a definição de estratégias de explotação de um campo petrolífero e a interpretação das continuidades hidráulicas dos reservatórios, bem como auxílio para a construção do modelo geológico para os reservatórios, a partir da interpretação do comportamento estrutural das diversas camadas em subsuperfície. Este trabalho apresenta um método de automação das atividades manuais envolvidas na correlação estratigráfica, com a utilização de vários perfis geofísicos de poço, através de uma arquitetura de rede neural artificial multicamadas, treinada com o algoritmo de retropropagação do erro. A correlação estratigráfica, obtida a partir da rede neural artificial, possibilita o transporte da informação geológica do datum de correlação ao longo do campo, possibilitando ao intérprete, uma visão espacial do comportamento do reservatório e a simulação dos possíveis paleoambientes. Com a metodologia aqui apresentada foi possível a construção automática de um bloco diagrama, mostrando a disposição espacial de uma camada argilosa, utilizando-se os perfis de Raio Gama (RG), Volume de Argila (Vsh), Densidade (ρb) e de Porosidade Neutrônica (φn) selecionados em cinco poços da região do Lago Maracaibo, na Venezuela.Dissertação Acesso aberto (Open Access) Desenvolvimento de softwares e algoritmo baseado em redes neurais artificiais para suporte à gestão da mobilidade urbana em smart campus com característica multimodal(Universidade Federal do Pará, 2022-07-20) SÁ, Joiner dos Santos; ARAÚJO, Jasmine Priscyla Leite de; http://lattes.cnpq.br/4001747699670004Este trabalho apresenta o desenvolvimento de duas soluções de software e um algoritmo baseado em redes neurais artificiais para suporte à gestão da mobilidade urbana em um smart campus. O primeiro software, intitulado Norte Rotas, é uma solução web cujo objetivo é dar suporte ao planejamento de rotas de pedestres, provendo informações relevantes sobre condições físicas das rotas de um smart campus. Já a segunda solução, é um software mobile Android que tem o objetivo de fazer a gestão de modais de transporte presentes em um smart campus. Testes em ambiente simulado e real foram realizados e os resultados apontam que as ferramentas propostas são boas soluções para o planejamento e gerenciamento de rotas de modais em um campus universitário inteligente. Além dos softwares, é proposto um algoritmo de inteligência computacional para determinação da melhor rota de viagem considerando as opções a pé, de ônibus e de barco em um sistema IoT de um smart campus. Dados foram coletados a partir de rotas do ônibus Circular da UFPA, e testes com diferentes parâmetros de uma RNA foram realizados. Os resultados apontam que a solução baseada em RNA é promissora para ser implantada em sistemas de auxílio à mobilidade urbana em um smart campus.Dissertação Acesso aberto (Open Access) Determinação automática da porosidade e zoneamento de perfis através da rede neural artificial competitiva(Universidade Federal do Pará, 2000) LIMA, Klédson Tomaso Pereira de; ANDRADE, André José Neves; http://lattes.cnpq.br/8388930487104926Duas das mais importantes atividades da interpretação de perfis para avaliação de reservatórios de hidrocarbonetos são o zoneamento do perfil (log zonation) e o cálculo da porosidade efetiva das rochas atravessadas pelo poço. O zoneamento é a interpretação visual do perfil para identificação das camadas reservatório e, consequentemente, dos seus limites verticais, ou seja, é a separação formal do perfil em rochas reservatório e rochas selante. Todo procedimento de zoneamento é realizado de forma manual, valendo-se do conhecimento geológico-geofísico e da experiência do intérprete, na avaliação visual dos padrões (características da curva do perfil representativa de um evento geológico) correspondentes a cada tipo litológico específico. O cálculo da porosidade efetiva combina tanto uma atividade visual, na identificação dos pontos representativos de uma particular rocha reservatório no perfil, como a escolha adequada da equação petrofísica que relaciona as propriedades físicas mensuradas da rocha com sua porosidade. A partir do conhecimento da porosidade, será estabelecido o volume eventualmente ocupado por hidrocarboneto. Esta atividade, essencial para a qualificação de reservatórios, requer muito do conhecimento e da experiência do intérprete de perfil para a efetiva avaliação da porosidade efetiva, ou seja, a porosidade da rocha reservatório, isenta do efeito da argila sobre a medida das propriedades físicas da mesma. Uma forma eficiente de automatizar estes procedimentos e auxiliar o geofísico de poço nestas atividades, que particularmente demandam grande dispêndio de tempo, é apresentado nesta dissertação, na forma de um novo perfil, derivado dos perfis tradicionais de porosidade, que apresenta diretamente o zoneamento. Pode-se destacar neste novo perfil as profundidades do topo e da base das rochas reservatório e das rochas selante, escalonado na forma de porosidade efetiva, denominado perfil de porosidade efetiva zoneado. A obtenção do perfil de porosidade efetiva zoneado é baseado no projeto e execução de várias arquiteturas de rede neural artificial, do tipo direta, com treinamento não supervisionado e contendo uma camada de neurônios artificiais, do tipo competitivo. Estas arquiteturas são projetadas de modo a simular o comportamento do intérprete de perfil, quando da utilização do gráfico densidade-neutrônico, para as situações de aplicabilidade do modelo arenito-folhelho. A aplicabilidade e limitações desta metodologia são avaliadas diretamente sobre dados reais, oriundos da bacia do Lago Maracaibo (Venezuela).Dissertação Acesso aberto (Open Access) Estimação da porcentagem de flúor em alumina fluoretada proveniente de uma planta de tratamento de gases por meio de um sensor virtual neural(Universidade Federal do Pará, 2011-06-22) SOUZA, Alan Marcel Fernandes de; OLIVEIRA, Roberto Célio Limão de; http://lattes.cnpq.br/4497607460894318; AFFONSO, Carolina de Mattos; http://lattes.cnpq.br/2228901515752720As indústrias têm buscado constantemente reduzir gastos operacionais, visando o aumento do lucro e da competitividade. Para alcançar essa meta, são necessários, dentre outros fatores, o projeto e a implantação de novas ferramentas que permitam o acesso às informações relevantes do processo de forma precisa, eficiente e barata. Os sensores virtuais têm sido aplicados cada vez mais nas indústrias. Por ser flexível, ele pode ser adaptado a qualquer tipo de medição, promovendo uma redução de custos operacionais sem comprometer, e em alguns casos até melhorar, a qualidade da informação gerada. Como estão totalmente baseados em software, não estão sujeitos a danos físicos como os sensores reais, além de permitirem uma melhor adaptação a ambientes hostis e de difícil acesso. A razão do sucesso destes tipos de sensores é a utilização de técnicas de inteligência computacional, as quais têm sido usadas na modelagem de vários processos não lineares altamente complexos. Este trabalho tem como objetivo estimar a qualidade da alumina fluoretada proveniente de uma Planta de Tratamento de Gases (PTG), a qual é resultado da adsorção de gases poluentes em alumina virgem, via sensor virtual. O modelo que emula o comportamento de um sensor de qualidade de alumina foi criado através da técnica de inteligência computacional conhecida como Rede Neural Artificial. As motivações deste trabalho consistem em: realizar simulações virtuais, sem comprometer o funcionamento da PTG; tomar decisões mais precisas e não baseada somente na experiência do operador; diagnosticar potenciais problemas, antes que esses interfiram na qualidade da alumina fluoretada; manter o funcionamento do forno de redução de alumínio dentro da normalidade, pois a produção de alumina de baixa qualidade afeta a reação de quebra da molécula que contém este metal. Os benefícios que este projeto trará consistem em: aumentar a eficiência da PTG, produzindo alumina fluoretada de alta qualidade e emitindo menos gases poluentes na atmosfera, além de aumentar o tempo de vida útil do forno de redução.Tese Acesso aberto (Open Access) Estimação das parcelas de contribuição de cargas não lineares na distorção harmônica de tensão de um barramento de interesse do sistema elétrico de potência utilizando rede neural artificial(Universidade Federal do Pará, 2019-09-06) MANITO, Allan Rodrigo Arrifano; TOSTES, Maria Emília de Lima; http://lattes.cnpq.br/4197618044519148; BEZERRA, Ubiratan Holanda; http://lattes.cnpq.br/6542769654042813Apresenta-se neste trabalho uma metodologia para estimar a contribuição de cargas não lineares na distorção harmônica de tensão de um barramento de interesse do sistema elétrico de potência. A estimação é realizada através da construção de um modelo com base em redes neurais artificiais (RNA) juntamente com uma análise de sensibilidade nos neurônios de entrada da rede neural. A entrada do modelo neural é constituída pelas correntes harmônicas provenientes das cargas não lineares que compõem o sistema estudado, e a saída da RNA corresponde aos valores de tensão harmônica no barramento sob estudo, para a mesma frequência harmônica. O estudo é realizado para cada ordem harmônica individualmente e os dados necessários para a construção do modelo bem como para validação dos resultados são obtidos a partir de campanhas de medição sincronizadas e por meio de simulação computacional, através de estudos de fluxo de carga harmônico. A partir de comparações dos resultados de referência via simulação computacional com os resultados obtidos via modelo neural, é observado que a metodologia desenvolvida é capaz de classificar corretamente o grau de impacto de cargas não lineares na distorção de tensão em uma barra de interesse do sistema elétrico. Adicionalmente, é demonstrada a eficácia da metodologia em dois sistemas reais a fim de verificar o bom desempenho desta metodologia diante de dados reais obtidos durante campanhas de medição.Dissertação Acesso aberto (Open Access) Estimativa dos perfis de permeabilidade e de porosidade utilizando rede neural artificial(Universidade Federal do Pará, 2002-11-05) GOMES, Laércio Gouvêa; ANDRADE, André José Neves; http://lattes.cnpq.br/8388930487104926A permeabilidade e a porosidade são duas das mais importantes propriedades petrofísicas para a qualificação dos reservatórios de óleo e gás. A porosidade está relacionada à capacidade de armazenamento de fluidos e a permeabilidade, com a capacidade de produção destes fluidos. Suas medidas são, normalmente, realizadas em laboratório, através de testemunhos da rocha. Esses processos têm custos elevados e nem todos os poços são testemunhados. As estimativas da permeabilidade e da porosidade são de fundamental importância para os engenheiros de reservatório e geofísicos, uma vez que seus valores podem definir a completação ou não de um poço petrolífero. O perfil de porosidade e sua relação com o perfil de densidade, é bem conhecida na geofísica de poço. No entanto, existem poucas relações quantitativas e/ou qualitativas entre a porosidade e a permeabilidade, como por exemplo as relações de Kozeny. Sendo assim, este trabalho busca o estabelecimento do perfil de permeabilidade e do perfil de porosidade, a partir de informações do perfil de densidade. Para tanto, buscamos a relação entre a propriedade física da rocha (densidade) e as propriedades petrofísicas: permeabilidade e porosidade, utilizando como metodologia à técnica de redes neurais artificiais, como a rede neural artificial com função de base radial. A obtenção da permeabilidade e da porosidade a partir da rede neural artificial, que possui como entrada a informação da densidade possibilita um menor custo para a aquisição dessas importantes informações petrofísicas, permite ao intérprete de perfis de poço optar ou não pela exploração de uma unidade estudada, além de uma visão mais completa do reservatório. Os procedimentos para a estimativa da permeabilidade e da porosidade estão direcionados para uma única formação, mas os intérpretes de perfis poderão aplicar a diretriz apresentada no programa de rede neural artificial com função de base radial, utilizando a estimativa dessas propriedades petrofísicas para outras formações, inclusive de outros campos petrolíferos. Portanto, recomenda-se a utilização de um conjunto de dados completo, com quantidade de dados suficientes de um mesmo poço, a fim de viabilizar corretamente a melhor interpretação.Tese Acesso aberto (Open Access) Extração de conhecimento em forma de regras difusas a partir de mapas auto-organizáveis de Kohonen: aplicação em diagnóstico de faltas incipientes em transformadores(Universidade Federal do Pará, 2013-03-11) SILVA, Ana Carla Macedo da; CASTRO, Adriana Rosa Garcez; http://lattes.cnpq.br/5273686389382860Apesar das diversas vantagens oferecidas pelas redes neurais artificiais (RNAs), algumas limitações ainda impedem sua larga utilização, principalmente em aplicações que necessitem de tomada de decisões essenciais para garantir a segurança em ambientes como, por exemplo, em Sistemas de Energia. Uma das principais limitações das RNAs diz respeito à incapacidade que estas redes apresentam de explicar como chegam a determinadas decisões; explicação esta que seja humanamente compreensível. Desta forma, este trabalho propõe um método para extração de regras a partir do mapa auto-organizável de Kohonen, projetando um sistema de inferência difusa capaz de explicar as decisões/classificação obtidas através do mapa. A metodologia proposta é aplicada ao problema de diagnóstico de faltas incipientes em transformadores, em que se obtém um sistema classificatório eficiente e com capacidade de explicação em relação aos resultados obtidos, o que gera mais confiança aos especialistas da área na hora de tomar decisões.Tese Acesso aberto (Open Access) Um framework para a previsão de cenários com o uso de sistemas híbridos neurogenéticos para compra e venda de energia elétrica no mercado futuro(Universidade Federal do Pará, 2012-05-04) CONDE, Guilherme Augusto Barros; FRANCÊS, Carlos Renato Lisboa; http://lattes.cnpq.br/7458287841862567No contexto da previsão de séries temporais, é grande o interesse em estudos de métodos de previsão de séries temporais que consigam identificar as estruturas e padrões existentes nos dados históricos, possibilitando gerar os próximos padrões da série. A proposta defendida nesta tese é a de desenvolvimento de um framework que utilize ao máximo as potencialidades das técnicas de previsão (redes neurais artificiais) com as técnicas de otimização (algoritmos genéticos) em um sistema híbrido intercomunicativo que aproveite bem as vantagens de cada uma dessas técnicas para a geração de cenários futuros que possam mostrar, além das previsões normais com base nos valores históricos, percursos alternativos das curvas das séries temporais analisadas.Dissertação Acesso aberto (Open Access) Handoff de espectro em redes baseadas em rádio cognitivo utilizando redes neurais artificiais(Universidade Federal do Pará, 2011-02-03) BALIEIRO, Andson Marreiros; COSTA JÚNIOR, Carlos Tavares da; http://lattes.cnpq.br/6328549183075122Hoje, o espectro de rádio é um dos mais importantes recursos naturais no mundo. Segundo relatórios da FCC (do inglês, Federal Communications Commission), as bandas licenciadas, apesar de abundantes, são pobremente utilizadas. A tecnologia de rádio cognitivo visa melhorar a eficiência espectral através do acesso oportunista ao espectro. Permite que novas aplicações baseadas em comunicação sem fio sejam suportadas, sem interferir na comunicação licenciada e buscando garantir a qualidade de serviço das aplicações que a utilizam. Neste âmbito, o handoff de espectro é um dos requisitos essenciais e críticos na adoção desta tecnologia. Este trabalho realiza uma discussão da tecnologia de rádio cognitivo, propõe e avalia uma estratégia proativa para handoff de espectro em redes baseadas em rádio cognitivo utilizando Redes Neurais Artificiais. O desempenho da proposta em termos de nível de interferência ao usuário primário, número de handoffs de espectro realizado pelo usuário secundário e utilização espectral, é comparado com o obtido por um esquema reativo. Diferentemente de outras propostas que se baseiam em modelos estocásticos pré-definidos, utilizaram-se medidas reais de sensoriamento disponibilizados pelo IEEE Dyspan 2008 para avaliar a proposta. Resultados numéricos mostram a superioridade do esquema proposto.Dissertação Acesso aberto (Open Access) Identificação automática das primeiras quebras em traços sísmicos por meio de uma rede neural direta(Universidade Federal do Pará, 2000) MIRANDA, Anna Ilcéa Fischetti; ANDRADE, André José Neves; http://lattes.cnpq.br/8388930487104926; CRUZ, João Carlos Ribeiro; http://lattes.cnpq.br/8498743497664023Apesar do avanço tecnológico ocorrido na prospecção sísmica, com a rotina dos levantamentos 2D e 3D, e o significativo aumento na quantidade de dados, a identificação dos tempos de chegada da onda sísmica direta (primeira quebra), que se propaga diretamente do ponto de tiro até a posição dos arranjos de geofones, permanece ainda dependente da avaliação visual do intérprete sísmico. O objetivo desta dissertação, insere-se no processamento sísmico com o intuito de buscar um método eficiente, tal que possibilite a simulação computacional do comportamento visual do intérprete sísmico, através da automação dos processos de tomada de decisão envolvidos na identificação das primeiras quebras em um traço sísmico. Visando, em última análise, preservar o conhecimento intuitivo do intérprete para os casos complexos, nos quais o seu conhecimento será, efetivamente, melhor aproveitado. Recentes descobertas na tecnologia neurocomputacional produziram técnicas que possibilitam a simulação dos aspectos qualitativos envolvidos nos processos visuais de identificação ou interpretação sísmica, com qualidade e aceitabilidade dos resultados. As redes neurais artificiais são uma implementação da tecnologia neurocomputacional e foram, inicialmente, desenvolvidas por neurobiologistas como modelos computacionais do sistema nervoso humano. Elas diferem das técnicas computacionais convencionais pela sua habilidade em adaptar-se ou aprender através de uma repetitiva exposição a exemplos, pela sua tolerância à falta de alguns dos componentes dos dados e pela sua robustez no tratamento com dados contaminados por ruído. O método aqui apresentado baseia-se na aplicação da técnica das redes neurais artificiais para a identificação das primeiras quebras nos traços sísmicos, a partir do estabelecimento de uma conveniente arquitetura para a rede neural artificial do tipo direta, treinada com o algoritmo da retro-propagação do erro. A rede neural artificial é entendida aqui como uma simulação computacional do processo intuitivo de tomada de decisão realizado pelo intérprete sísmico para a identificação das primeiras quebras nos traços sísmicos. A aplicabilidade, eficiência e limitações desta abordagem serão avaliadas em dados sintéticos obtidos a partir da teoria do raio.Tese Acesso aberto (Open Access) Imageamento da porosidade através de perfis geofísicos de poço(Universidade Federal do Pará, 2004-01-27) MIRANDA, Anna Ilcéa Fischetti; ANDRADE, André José Neves; http://lattes.cnpq.br/8388930487104926O imageamento da porosidade é uma representação gráfica da distribuição lateral da porosidade da rocha, estimada a partir de dados de perfis geofísicos de poço. Apresenta-se aqui uma metodologia para produzir esta imagem geológica, totalmente independente da intervenção do intérprete, através de um algoritmo, dito, interpretativo baseado em dois tipos de redes neurais artificiais. A primeira parte do algoritmo baseia-se em uma rede neural com camada competitiva e é construído para realizar uma interpretação automática do clássico gráfico o Pb - ΦN, produzindo um zoneamento do perfil e a estimativa da porosidade. A segunda parte baseia-se em uma rede neural com função de base radial, projetado para realizar uma integração espacial dos dados, a qual pode ser dividida em duas etapas. A primeira etapa refere-se à correlação de perfis de poço e a segunda à produção de uma estimativa da distribuição lateral da porosidade. Esta metodologia ajudará o intérprete na definição do modelo geológico do reservatório e, talvez o mais importante, o ajudará a desenvolver de um modo mais eficiente as estratégias para o desenvolvimento dos campos de óleo e gás. Os resultados ou as imagens da porosidade são bastante similares às seções geológicas convencionais, especialmente em um ambiente deposicional simples dominado por clásticos, onde um mapa de cores, escalonado em unidades de porosidade aparente para as argilas e efetiva para os arenitos, mostra a variação da porosidade e a disposição geométrica das camadas geológicas ao longo da seção. Esta metodologia é aplicada em dados reais da Formação Lagunillas, na Bacia do Lago Maracaibo, Venezuela.Dissertação Acesso aberto (Open Access) Implementação de modelos computacionais na predição temporal e espaço-temporal de parâmetros de qualidade de água(Universidade Federal do Pará, 2021-12-14) ALMEIDA, Anderson Francisco de Sousa; MERLIN, Bruno; http://lattes.cnpq.br/7336467549495208; HTTPS://ORCID.ORG/0000-0001-7327-9960; GONZÁLEZ, Marcos Tulio Amaris; http://lattes.cnpq.br/9970287865377659A qualidade da água esta diretamente relacionada com o nível de poluição causada pelas acoes antrópicas e industrias, destacando-se como consequência a redução da disponibilidade de uma água de qualidade. Por isso, são realizados os monitoramentos limnológicos dos parâmetros básicos da qualidade da água como forma de obtenção de dados que norteiam as tomadas de decisão dos órgãos de recursos hídricos. Neste contexto, o presente estudo tem a implementação de algoritmos de aprendizado de maquina para predizer de modo temporal e espaço-temporal os dados dos parâmetros da qualidade da água. As técnicas de aprendizado de maquina usadas foram regressão linear, ramdom forest, redes neurais MLP e L STM. Foram usados dois pontos de coletas de uma Unidade Gerenciamento de Recursos Hídricos em São Paulo, Brasil. Os modelos são avaliados atraves de métricas MAPE ( Erro percentual médio absoluto) e RMSE( Erro raiz quadrada média). Portanto, na predição temporal a técnica LSTM apresentou o melhor desempenho em relação as demais técnicas, pois tem menor resultado de RMSE médio, com 2,47. Porem, na predição espaço-temporal, o MLP tem os melhores desempenhos tanto em relação as demais técnicas quanto aos dados utilizados, pois tem menores resultados médios de MAPE e RMPE, respectivamente, 5,94% e 1,34. Desse modo, estes desempenhos neurais podem ser justificados pela não linearidade dos dados parâmetros. Além disso, os resultados dos experimentos visam contribuir com os processos de monitoramento da qualidade da água e auxiliar o planejamento da gestão hídrica de modo que atenda as legislações vigentes e possibilite a indicação de politicas publicas atraves de modelos de aprendizado de maquina na predição dos parâmetros de qualidade de água.
