Logo do repositório
Tudo no RIUFPA
Documentos
Contato
Sobre
Ajuda
  • Português do Brasil
  • English
  • Español
  • Français
Entrar
Novo usuário? Clique aqui para cadastrar. Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Sinais EEG"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    DissertaçãoAcesso aberto (Open Access)
    Estrutura competitiva de redes neurais autoassociativas para classificação de fadiga mental através de sinais de eletroencefalografia
    (Universidade Federal do Pará, 2018-12-21) FERREIRA, Mylena Nazaré Medeiros dos Reis; CASTRO, Adriana Rosa Garcez; http://lattes.cnpq.br/5273686389382860
    A complexidade da analise da fadiga mental em pessoas saudaveis e evidenciada pela ausencia de perturbacoes especificas no sinal eletroencefalografico e pela singularidade e variabilidade do perfil cognitivo de cada individuo. Identificar esse tipo de estado mental requer a analise de diversos fatores que envolvem o comportamento das regioes cerebrais em diversas faixas de frequencia. No contexto da industria, a fadiga mental compromete a eficiencia da cadeia produtiva ao afetar a percepcao (concentracao e atencao) dos individuos, o que aumenta o risco de acidentes e os custos de producao. Desta forma, o monitoramento da condicao cognitiva faz-se necessario para a manutencao do desempenho produtivo e cognitivo do individuo avaliado. Dentro deste contexto, este trabalho propoe um sistema para classificacao da fadiga mental baseado em uma estrutura competitiva de Redes Neurais Autoassociativas e em sinais obtidos atraves de um eletroencefalografo. O vetor de caracteristicas usado como entrada para o sistema e composto pelas informacoes normalizadas de tres faixas de frequencias (teta, beta e alfa) e quatro metricas que, de acordo com a literatura, diferenciam estados mentais a partir dos dados eletroencefalograficos, em termos de densidade de energia espectral. Os resultados obtidos mostram a eficiencia do sistema proposto e a aplicabilidade das redes neurais autoassociativas para problemas de classificacao de padroes.
Logo do RepositórioLogo do Repositório
Nossas Redes:

DSpace software copyright © 2002-2026 LYRASIS

  • Configurações de Cookies
  • Política de Privacidade
  • Termos de Uso
  • Entre em Contato
Brasão UFPA