Navegando por Assunto "Stratigraphy"
Agora exibindo 1 - 3 de 3
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Estratigrafia e eventos da transição Neoarqueano-Paleoproterozoico da Bacia de Carajás, sudeste do Cráton Amazônico(Universidade Federal do Pará, 2020-09-18) ARAÚJO, Raphael Neto; NOGUEIRA, Afonso César Rodrigues; http://lattes.cnpq.br/8867836268820998The Neoarchean-Paleoproterozoic transition is marked by a series of paleoenvironmental, paleoclimatic and tectonic changes that resulted in dramatic events, which imposed to the Earth novel conditions, some of them with irreversible characteristics. On the paleoenvironmental aspect, it is highlighted the rise of oxygen in the hydrosphere-atmosphere system, onset the Great Oxidation Event (GOE) at around ca. 2.45 Ga. The rise of this gas caused consequently the decrease of the greenhouse gases such as CH4, which promoted the emergence of glacial episodes at around ca. 2.45–2.22 Ga, generically termed the Huronian Glacial Event (HGE). Although several studies support the hypothesis that these glacial episodes represent the first global glaciation of the Earth's history (Paleoproterozoic snowball Earth), stratigraphic and geochronological contradictions impose doubt as to its global extension. Strangely, although this set of events is widely recognized in several cratonic areas around the globe, these events are still poorly understood and/or not yet reported in the Amazonian Craton. In this study, the stratigraphic, sedimentological and geochronological investigation of the volcano-sedimentary succession (ca. 5-km-thick) of the Carajás Basin, situated in the southeastern Amazonian Craton, northern Brazil, allowed the recognition and sequencing of some of these events in this basin. Two new units are being formally proposed to this basin: the Serra Sul and Azul formations. Glacial diamictite intervals of the Siderian–Rhyacian (ca. 2.58–2.06 Ga) occur stacked within the Serra Sul Formation, and are the first reported occurrence of glacial deposits of that age in South America. In paleogeographic terms, the occurrence of Paleoproterozoic glacial deposits in this part of the globe, expands the reach of these glaciations to the Amazonian Craton for the first time, although the Serra Sul diamictite may be correlated with any of the know Paleoproterozoic glaciations, or none of them. Well-preserved textures, such as glacial foliation and dropstone features, indicate that the deposition of the Serra Sul Formation occurred in a coastal subglacial setting, in which glaciogenic sediments were resedimented in submarine fan system, and through ice rafting process in distal waters of the marine environment. The Serra Sul glacial system was developed immediately above of pre-glacial strata represented by the Neoarchean banded iron formation and volcanic rock units, which not was the main substrate, but also was the main source of sediments to this glacial system. Additionally, the stratigraphic results indicate that the immediately above of the Serra Sul diamictite, rhythmite deposits of the Azul Formation, locally enriched in manganese, were deposited in a shallow marine environment (offshore and offshore transition/shoreface zones), as a result of the sea level rise during the deglaciation phase. The manganese-bearing strata were possibly deposited in association with black shale deposits—which allowed the formation of rhodochrosite during diagenesis—in deep zones of the marine basin. Petrographic and mineralogical evidences, supported by field observation, indicate that manganese oxides were secondarily remobilized through faults to zones with low strain and high permo-porosity within red bed strata of the Azul Formation, similarly to that observed in hydrocarbon migration. In stratigraphic terms, the Azul Formation represents the same interval previously arranged in the lower member of the Águas Claras Formation. This formation was redefined to designate exclusively sandstone, conglomerate and jasper conglomerate strata, deposited in a braided fluvial system, which occur in unconformably immediately above of the Azul Formation. Moreover, it is suggested that the Azul and Águas Claras formations are the stratigraphic record associated with a transgressive-regressive sequence (T-R). The dating (U-Pb) of detrital zircon grains separated from the Azul and Águas Claras formations indicate that Meso- to Neoarchean rocks, possibly of the Rio Maria and Carajás domains, were the main source of sediments. The 207Pb/206Pb Age distribution of the 76 concordant analysis of the Azul Formation indicate a youngest population at ca. 2.27 Ga, interpreted as the maximum deposition age of this unit. The occurrence of Rhyacian to Siderian zircon grains in this unit strongly suggest that the Bacajá Domain may have been a subordinated source of sediments, and in paleogeographic terms, suggest a possible connection between this domain and the Carajás Domain at that time period. The integration of the results obtained from this study, supported by previous data on the regional geology, allowed the proposition of a tectono-sedimentary evolutive model to the Paleoproterozoic succession of the Carajás Basin. It is envisaged that this basin evolved during the greater part of the Paleoproterozoic in a foreland style, as result of the collision of the Bacajá and the Carajás domains during the Transamazonian orogenetic cycle at ca. 2.2–2.0 Ga. The convergent movement of these blocks caused the gradual uplift of the Carajás protocontinent; the closure of the Azul Sea, and installation of a wide fluvial-alluvial system, in which the Águas Claras and Gorotire formations were deposited. This scenario of profound changes is directly related to the Columbia supercontinent assembly at the end of the Paleoproterozoic, that promoted the continentalization and amalgamation of the ancient landmasses that later formed the proto-Amazonian Craton at the end of Paleoproterozoic.Item Acesso aberto (Open Access) Gênese e distribuição estratigráfica das concreções carbonáticas da ilha de Baunilha Grande, região do Quatipuru - Pará(Universidade Federal do Pará, 2025-06-27) GARCIA, Danilo Sena; SOARES, Joelson Lima; http://lattes.cnpq.br/1345968080357131In the Baunilha Grande Ecofacies, defined by Petri (1957) and located on Baunilha Grande Island, in the Quatipuru region, Pará, carbonate concretions known as carcinolites are found. However, near these carcinolites, there are other concretions whose origin and stratigraphic position had not yet been described. These concretions are part of the Pirabas Formation, from the Lower Miocene, composed of fossiliferous limestones and sedimentary deposits that record a shallow coastal marine environment influenced by tides. This study aims to characterize the formation of carbonate concretions on Baunilha Grande Island and their relationship with the diagenetic and stratigraphic processes of the Pirabas Formation. The methodology included: (I) Petrographic, mineralogical, and geochemical analysis of the concretions, using techniques such as optical microscopy, X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive Spectroscopy (EDS); (II) Stratigraphic correlation of the concretions with similar deposits in Salinópolis and Maracanã, relating them to sedimentation events, bioturbation, and diagenesis. The results indicate that the concretions exhibit different shapes and compositions, classified into four main types: spherical, tubular, rough, and bulbous. Mineralogical analysis revealed the predominant presence of quartz and calcite, along with kaolinite and kutnohorite in some samples. Pyrite is present in all concretions, particularly associated with organic fossils and the diagenesis of diatoms. The presence of these concretions suggests early cementation processes in sandstone lenses and bioturbation in shales, influenced by sea-level variations and storm events. The high pyrite content in the concretions indicates a reducing depositional environment favorable for organic matter preservation and sulfide formation. The relationship between concretions and sedimentary structures suggests that these features are restricted to the top of the Pirabas Formation, near its contact with the Barreiras Formation. Thus, the occurrence of these concretions can serve as a stratigraphic marker for the top of the Pirabas Formation.Item Acesso aberto (Open Access) Petrografia, alterações hidrotermais e eventos mineralizantes do Bloco Norte do depósito aurífero Volta Grande, Domínio Bacajá (PA), Cráton Amazônico(Universidade Federal do Pará, 2021-09-22) SOUZA, Hugo Paiva Tavares de; VASQUEZ, Marcelo Lacerda; http://lattes.cnpq.br/4703483544858128; https://orcid.org/0000-0003-2729-9404; FERNANDES, Carlos Marcello Dias; http://lattes.cnpq.br/0614680098407362; https://orcid.org/0000-0001-5799-2694The southeastern region of the Amazonian Craton has been the target of several mineral survey programs over the past few years, which have recently led to the identification of the world-class Volta Grande gold deposit, with reserves of ~3.8 Moz at 1.02 g/t, which provides an expectation of 17 years of operation. The deposit is in the municipality of Senador José Porfírio in Pará and is housed in Rhyacian granitoids (2.15 Ga) that occur associated with the volcano-sedimentary Siderian sequence (2.45 Ga) of the Três Palmeiras Group. These units are in the Bacajá Domain, which is formed by belts of high-grade para- and orthoderived rocks and greenstone belt of Archean to Siderian protoliths, reworked during the orogenesis of the Transamazonian Cycle (2.26–2.06 Ga). Granitoids and charnockites sectioned this set in Rhyacian. Part of the mineralization at the Volta Grande is housed in granitoids metamorphosed under medium to high-grade conditions. Local kinematic indicators suggest dip-slip movement in which the greenstone moves up relative to the intrusive rocks. Petrographic descriptions carried out in this work revealed: 1) gray to greenish mylonitic granodiorite, with intense deformation of the main minerals that make up them, such as quartz, biotite, and feldspars. The texture in this lithotype is mainly porphyroclastic. Main metamorphic foliation (S1) is defined by biotite and amphibole, as well as reveals concordant quartz veins and venules. The highest gold contents are distributed in upper amphibolite facies zones. In these, the ore occurs mainly as isolated grains in cm-sized quartz veins and venules associated with pervasive carbonatic alteration that was synchronous to dynamic metamorphism, as well as in a fracture-controlled style. Part of the gold is also associated with a low sulfides content disseminated in the veins and host rock; 2) The metamafic rocks comprise foliated fine- to medium-grained amphibolite and andesite with a dark grayish-green color and nematoblastic texture. Chlorite, calcite, sericite, and opaque minerals are the main secondary phases. These relationships are compatible with lode-type gold systems, usually developed in the transition between greenschist to amphibolite metamorphic facies. Lava flows and dykes of isotropic rhyodacite, rhyolite, and plutonic rocks such as quartz monzonite, granodiorite, monzodiorite, and minor microgranite cut the mineralizing event previously described. Plutonic rocks are medium- to coarse-grained, have a gray color with reddish and greenish portions throughout the profiles, inequigranular texture with quartz, feldspar, biotite, and amphibole. Apatite, zircon, calcite, epidote, and opaque minerals are primary accessories. In turn, volcanics have light gray, black or dark red colors, porphyritic to aphyric texture, and microlithic or felsophyric groundmass. They reveal phenocrysts of plagioclase, amphibole, potassic feldspar, and quartz. This volcano-plutonic system contains potassic, propylitic, intermediate argillic, and/or carbonate hydrothermal alterations in selective, pervasive, or fracture-controlled styles. In hydrothermalized zones, gold occurs as isolated grains disseminated or associated with sulfides, as well as in cm-sized quartz veins in a stockwork arrangement. These characteristics are like those of shallow intermediate- to lowsulfidation epithermal systems already identified in the Amazonian Craton. The Volta Grande data suggest a second overprinted mineralizing event, common in high-tonnage productive gold deposits in China, Finland, and other areas of the planet and represents a new exploration guide for the Bacajá Domain. Several mineralizing events are critical to the economic feasibility and longevity of world-class gold deposits. Thus, new geochemical, geochronological, microthermometric, and stable isotope data will be obtained to better define the genetic modeling of the Volta Grande gold deposit.