Navegando por Assunto "Transporte eletrônico"
Agora exibindo 1 - 7 de 7
- Resultados por página
- Opções de Ordenação
Item Acesso aberto (Open Access) Design de nanodispositivos eletroluminescentes baseados no ALQ3(Universidade Federal do Pará, 2013-04-29) SILVA, Alessandre Sampaio da; DEL NERO, Jordan; http://lattes.cnpq.br/5168545718455899In this study we investigated theoretically the electronic structure of [tris-(8-hidroxiquinolinolato) aluminum (III) - Alq3, solvation properties of the electroluminescent Alq3 organic liquids such as methanol, ethanol, dimethylformamide (DMF) and acetonitrile in order to understand the dependence the variation of system environments, improving the operation of conveyors films in electroluminescent devices of the type OLED (Organic Light-Emitting Diodes), and finally investigated the mechanism of Alq3 in the electron transport applying a low electrical current in the molecule and current curves showing the –voltage characteristic of the device. The simulation method consists of applying the sequential Monte Carlo / Quantum Mechanics (S-MC/MQ), that part of an initial treatment for separation of stochastic structures most likely to lower energy and subsequently with a quantum treatment to plot the electronic spectra of the layers solvation separated by the ZINDOS/S method. In the electrical properties of transport we use the Green function method coupled nonequilibrium density functional theory (DFT) inferring that the ramifications outer rings corresponding to the Alq3 would terminals for electronic transfer. Our results showed that the average absorption spectra of Alq3 for solvation in solutions undergoes a minimum deviation with changing environment, being in good agreement with the experimental results from the literature, and the IV curves confirmed the behavior of the diode device, corroborating the senses as more relevant to the terminals in Alq3 to have a satisfactory transport electronics.Item Acesso aberto (Open Access) Efeito de interferência quântica no transporte eletrônico de dispositivos "quasi"-unidimensionais(Universidade Federal do Pará, 2018-05-03) OLIVEIRA, Alexandre de Souza; SILVA, Shirsley Joany dos Santos da; http://lattes.cnpq.br/6060351208361634; DEL NERO, Jordan; http://lattes.cnpq.br/5168545718455899The study of electronic transport in nano devices has been of great relevance in the last years, since the work of Aviran and Ratner, based on the properties of electrical conductivity in individual rectifying molecules under the action of an external electric field. The organic conjugated polymers in the pure state have low conductivity, but when doped, treated with reducing agents or connected to gold electrodes (Au) and subjected to an external electric field, they have a metallic behavior, that is, with high conductivity in line with experimental work. In this research we used devices composed of organic polymers conjugated in the pure state and also doped with chains containing simple (σ) and double (σ-π) type bonds, alternating between the carbons and these bound only to hydrogen atoms with gold electrodes (Au) connected at the ends of the individual molecules. This study was proposed for two types of electrodes: pyramid and plane. The model devices were optimized through the Extended Hückel Theory (EHT) and the computation of the electronic transport was performed using EHT combined with the Non-Equilibrium Green Function (NEGF). These devices are either quasi-1D or approximately linear structures and have been divided into two groups: the first, with odd numbers of carbon atoms from five (5) to nineteen (19) carbon atoms in their individual molecule (Group 1) and the second, with even numbers starting at six (6) going up to twenty (20) carbon atoms in its individual molecule (Group 2). The devices were subjected to two conditions: at low voltage, ranging from 0 to 0.1 Volt and then to high voltage, from 0 to 1.0 Volt. In order to compare the current and voltage (I - V) curves and the differential - voltage conductance (G - V) between low and high voltage results, the same voltage range was used, that is, from 0 to 0.1 Volt. For this work, the effects of destructive quantum interference (DQI) as well as constructive quantum interference (CQI) were analyzed. The effects of DQI are produced due to anti-resonance in the transmittance evidenced by unaccessed states observed in the transmission peaks, not allowing the transport to occur without presenting oscillations in the conductivity curve.Item Acesso aberto (Open Access) Simulação de transporte eletrônico em dispositivos unimoleculares baseados em indicadores de pH(Universidade Federal do Pará, 2009-02-03) GRANHEN, Ewerton Ramos; DEL NERO, Jordan; http://lattes.cnpq.br/5168545718455899In recent decades, several researchers have tried employ molecules in electronic devices of nanoscale. For this reason, different electro / optical parameters, governing the electronic transport in organic molecules, need to be analyzed. In this work was developed a charge transport study to the composed propyl red, popularly used as pH indicator. The motivation to study it results from its structure formed of donor-acceptor subunits, coupled via azo group (N = N), a well known feature in molecular rectifiers. The methodology used to treat the system in equilibrium is based on Molecular Mechanics and Hartree-Fock methods. However, another method, based on the Landauer-Büttiker formalism, to non-equilibrium system was employed. Through these methods, the feature curves of molecular system were drawn and compared. The result of comparison lowed explain the phenomena that govern the electronic transport in nanostructure. Besides that, was analyzed the effects of metal contacts, connected on molecules in presence of external electric field.Item Acesso aberto (Open Access) Transporte de portadores minoritários que justificam o regime de ressonância eletrônica em sistemas de carbynes(Universidade Federal do Pará, 2016-02-24) OLIVEIRA, Antonio Wanderley; CAVALCANTE, Gervásio Protásio dos Santos; http://lattes.cnpq.br/2265948982068382; DEL NERO, Jordan; http://lattes.cnpq.br/5168545718455899One of the goals for the expansion of knowledge in molecular electronics may be found in the Project related to the creation of nanoscale circuits based on nonlinear current–voltage characteristics composed by molecules connected to metallic electrodes under the action of an external electric field. The development of molecular electronic devices using systems exhibiting similar feature as intrinsic semiconductor materials is one of the goals to be achieved by an extensive research in nanotechnology. Thus, this work aims at expanding of knowledge not only of the electronic transport, but also the physical features that justify the resonant regime for electronic transport, such as conductance and Transition Voltage Spectroscopy. We theoretically investigate the electronic charge transport in a molecular system composed by carbyne structures taking into account the variations in the bonds −𝐶≡𝐶− type (simple and triple bonds for each carbon). Ab initio calculations approximations are performed to investigate the distribution of electron states over the molecule in the presence of an external electric field. This new nanoelectronic device raise up advantage for the design of large 1D hybrid organic/metallic circuits with an increased electronic flow that is importante for the needs of nanotechnology.Item Acesso aberto (Open Access) Transporte eletrônico e quiralidade molecular: um estudo de dispositivos orgânicos em sistemas de dois terminais(Universidade Federal do Pará, 2010-06-18) SILVA, Shirsley Joany dos Santos da; DEL NERO, Jordan; http://lattes.cnpq.br/5168545718455899In this work, we simulate the electronic distribution properties as charge in two molecular organic compounds, the Ponceau SS (PSS) and Oligo-(para)phenylene-vinylene (PPV), by means of ab initio calculations and the Nonequilibrium Green function (NEGF) method. These methods demonstrate equivalence to the description of molecular device. We make quantum calculations for the Hamiltonian derivative Hartree-Fock (HF) and obtained the current-voltage characteristics (I-V) for the two molecular structures. With the method NEFG, we model the transport through of electronics multilevel system obtaining the current by parameters that describe the resonances and the asymmetry of the system. In response the PSS demonstrated an asymmetric characteristic for direct and reverse polarization, the resonance is reached and confirm the device as a bi-directional molecular transistor. For the PPV also investigate the geometric properties through the connection between electronic transport and the degree of chirality calculated means chiral index that only depends on the atomic positions. Since, the structural properties of chiral molecules can induce an asymmetry in the electron transport, resulting in the grinding process. We demonstrated that corrent-voltage and dipole moment are proportional to the degree of molecular chirality. This result suggests that the electronic transport in this system can be exploited in assessing the degree of chirality.Item Acesso aberto (Open Access) Transporte eletrônico em um alótropo de grafeno nanofitas de bifenileno com bordas hidrogenadas(Universidade Federal do Pará, 2024-11-06) SOUZA, Lucas Pessoa de; DEL NERO, Jordan; http://lattes.cnpq.br/5168545718455899Carbon-based nanostructured materials have aroused considerable interest in the scientific community due to their remarkable technological properties. Among the various carbon structures, graphene stands out as an allotropic form with a two-dimensional (2D) hexagonal structure, resulting from the sp² hybridization of carbon. In this work, we investigated the electronic properties of structures based on a 2D allotropic form of carbon, composed of rings of 4, 6 and 8, called Biphenylene. The research used the hydrogenation of the top of Biphenylene nanosheets, with the aim of exploring applications in molecular electronics. To achieve this, we employ Density Functional Theory (DFT) to optimize the structures and combine DFT with the Non-Equilibrium Green Functions method to obtain electronic transport properties. The band structure results indicate that, among the unit cells analyzed, the Biphenylene cell behaves as a conductive material when analyzed in the zigzag direction, while in the archmair direction they present characteristics of semiconductors. Regarding electronic transport properties, the Biphenylene nanodevice demonstrates behaviors like those of a field effect transistor in the studied range. Specifically, the zzBFNRH-O device, which exhibits field-effect transistor characteristics in the range of 0.00 V to 0.07 V, the same behavior we can observe for the zzBFNRH-H device, which exhibits the behavior of a field effect transistor for ranges from 0.00V to 0.50V. We can observe the behavior of the archBFNRH-O device where it indicates the behavior of a metal, presenting current conduction values after 0.10V. The archBFNRH-H device presents the behavior of a semiconductor, which indicates a gap of 1.8eV. We can observe that when the device width increases, this gap decreases. These results demonstrate that structures based on Biphenylene present themselves as a promising alternative for the development of nanodevices and applications in molecular electronics.Item Acesso aberto (Open Access) Transporte eletrônico entre nanopartículas metálicas(Universidade Federal do Pará, 2019-10-11) SILVA, Júlio César Reis da; DEL NERO, Jordan; http://lattes.cnpq.br/5168545718455899One of the great challenges of today is the effective manipulation of electronics at the nanoscale. This idea was initiated by Aviram and Ratner in 1974 in the creation of a unimolecular rectifier diode. Since then, important investigations have been emphasized in theoretical modeling of electronic transport, in order to study the dependence relationship of the structure of the molecular bridge with the electronic properties of the connections made with the electrodes, and in this way to build an electronic device functional. Thus, the research work carried out a theoretical study of the electron properties in single-molecule Au junctions, subjected to variations of molecular and quantum dots, through analysis of the characteristic curves of Current-Voltage, Differential Condutance-Voltage, Transmittance - Energy and Voltage, Density of the Device States as a function of Energy and Autochannels of Conduction. For that, the Density Functional Theory was combined with the Green Function of Non-Equilibrium via free Siesta and Transiesta software packages. The results indicate the presence of many interlacings of regions of electronic transport probabilities, mainly generating changes with those that have quantum dots. Finally, these electronic devices of Au presented several indications for other researches with other types of materials involved in the same central ideas of change of geometry with moleculares bridges and quantum dots for the control of loads and generation of new phenomena.